Euclidean addition chains scalar multiplication on curves with efficient endomorphism

Abstract : Random Euclidean addition chain generation has proven to be an efficient low memory and SPA secure alternative to standard ECC scalar multiplication methods in the context of fixed base point [21]. In this work, we show how to generalize this method to random point scalar multiplication on elliptic curves with an efficiently computable endomorphism. In order to do so we generalize results from [21] on the relation of random Euclidean chains generation and elliptic curve point distribution obtained from those chains. We propose a software implementation of our method on various platforms to illustrate the impact of our approach. For that matter, we provide a comprehensive study of the practical computational cost of the modular multiplication when using Java and C standard libraries developed for the arithmetic over large integers.
Type de document :
Article dans une revue
Journal of Cryptographic Engineering, Springer, In press, 〈10.1007/s13389-018-0190-0〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01794402
Contributeur : Pascal Véron <>
Soumis le : jeudi 17 mai 2018 - 14:57:41
Dernière modification le : mercredi 10 octobre 2018 - 10:10:37
Document(s) archivé(s) le : mardi 25 septembre 2018 - 20:21:07

Fichier

jcen-preprint-2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fangan-Yssouf Dosso, Fabien Herbaut, Nicolas Méloni, Pascal Véron. Euclidean addition chains scalar multiplication on curves with efficient endomorphism. Journal of Cryptographic Engineering, Springer, In press, 〈10.1007/s13389-018-0190-0〉. 〈hal-01794402〉

Partager

Métriques

Consultations de la notice

92

Téléchargements de fichiers

43