J. Audibert, Fast learning rates in statistical inference through aggregation, The Annals of Statistics, vol.37, issue.4, pp.1591-1646, 2009.
DOI : 10.1214/08-aos623

URL : https://hal.archives-ouvertes.fr/hal-00139030

P. Auer, N. Cesa-bianchi, Y. Freund, and R. E. Schapire, The nonstochastic multiarmed bandit problem, SIAM Journal of Computing, vol.32, issue.1, pp.48-77, 2003.
DOI : 10.1137/s0097539701398375

J. D. Banfield and A. E. Raftery, Ice floe identification in satellite images using mathematical morphology and clustering about principal curves, Journal of the American Statistical Association, vol.87, issue.417, pp.7-16, 1992.
DOI : 10.2307/2290446

URL : http://www.dtic.mil/dtic/tr/fulltext/u2/a213854.pdf

A. Barron, L. Birgé, and P. Massart, Risk bounds for model selection via penalization. Probability Theory and Related Fields, vol.113, pp.301-413, 1999.
DOI : 10.1007/s004400050210

G. Biau and A. Fischer, Parameter selection for principal curves, IEEE Transactions on Information Theory, vol.58, issue.3, p.12, 2004.
DOI : 10.1109/tit.2011.2173157

URL : https://hal.archives-ouvertes.fr/hal-00704941

L. Birgé and P. Massart, Minimal penalties for gaussian model selection, Probability Theory and Related Fields, vol.183, pp.33-73, 2007.

C. Brunsdon, Path estimation from GPS tracks, Proceedings of the 9th International Conference on GeoComputation, National Centre for Geocomputation, 2007.

N. Cesa-bianchi and G. Lugosi, Prediction, Learning and Games, vol.4, p.6, 2006.

N. Cesa-bianchi, G. Lugosi, and G. Stoltz, Minimizing regret with label-efficient prediction, IEEE Transactions on Information Theory, vol.51, p.11, 2005.
DOI : 10.1109/tit.2005.847729

URL : https://hal.archives-ouvertes.fr/hal-00007537

F. Chung and L. Lu, Concentration inequalities and martingale inequalities: A survey, vol.3, pp.79-127, 2006.

E. R. Engdahl and A. Villaseñor, 41 global seismicity: 1900-1999, vol.81, pp.665-690, 2002.

H. Friedsam and W. A. Oren, The application of the principal curve analysis technique to smooth beamlines, Proceedings of the 1st International Workshop on Accelerator Alignment, 1989.

T. Hastie and W. Stuetzle, Principal curves, Journal of the American Statistical Association, vol.84, p.12, 1989.

H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of educational psychology, vol.24, issue.6, p.417, 1933.

M. Hutter and J. Poland, Adaptive online prediction by following the perturbed leader, Journal of Machine Learning Research, vol.6, issue.6, pp.639-660, 2005.

V. Kanade, B. Mcmahan, and B. Bryan, Sleeping experts and bandits with stochastic action availability and adversarial rewards, AISTATS, vol.3, p.12, 2009.

B. , Principal curves: learning, design, and applications, vol.12, p.20, 1999.

B. Kégl and A. Krzy?ak, Piecewise linear skeletonization using principal curves, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.1, p.4, 2002.

B. Kégl, A. Krzy?ak, T. Linder, and K. Zeger, Learning and design of principal curves, vol.22, p.4, 2000.

R. D. Kleinberg, A. Niculescu-mizil, and Y. Sharma, Regret Bounds for Sleeping Experts and Bandits, COLT, 2008.

V. Laparra and J. Malo, Sequential principal curves analysis, 2016.

L. Li, B. Guedj, and S. Loustau, A quasi-Bayesian perspective to online clustering, Electronic Journal of Statistics, vol.12, issue.2, p.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01264233

D. A. Mcallester, Some PAC-Bayesian theorems, Machine Learning, vol.37, pp.355-363, 1999.

D. A. Mcallester, PAC-Bayesian model averaging, Proceedings of the 12th annual conference on Computational Learning Theory, pp.164-170, 1999.

G. Neu and G. Bartók, An efficient algorithm for learning with semi-bandit feedback, Lecture Notes in Computer Science, vol.8139, pp.234-248, 2013.

K. Pearson, On lines and planes of closest fit to systems of point in space, Philosophical Magazine, vol.2, issue.11, pp.559-572, 1901.

K. Reinhard and M. Niranjan, Parametric subspace modeling of speech transitions, Speech Communication, vol.27, issue.1, pp.19-42, 1999.

S. Sandilya and S. R. Kulkarni, Principal curves with bounded turn, IEEE Transactions on Information Theory, vol.48, issue.4, pp.2789-2793, 2002.

J. Shawe-taylor and R. C. Williamson, A PAC analysis of a Bayes estimator, Proceedings of the 10th annual conference on Computational Learning Theory, pp.2-9, 1997.

C. Spearman, General Intelligence, Objectively Determined and Measured. The American Journal of Psychology, vol.15, issue.2, pp.201-292, 1904.

D. C. Stanford and A. E. Raftery, Finding curvilinear features in spatial point patterns: principal curve clustering with noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.6, pp.601-609, 2000.
DOI : 10.1109/34.862198