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Abstract

TAGE is one of the most accurate conditional branch predictors known today. However, TAGE does not ex-
ploit its input information perfectly, as it is possible to obtain significant prediction accuracy improvements
by complementing TAGE with a statistical corrector using the same input information. This paper proposes
an alternative TAGE-like predictor making statistical correction practically superfluous.

1 Introduction

The branch predictor is the keystone of modern superscalar microarchitectures. Reducing the number of
branch mispredictions is a relatively simple way to increase performance and simultaneously decrease en-
ergy consumption.

Research in branch prediction has been a decades-long effort, largely focused on predicting the direction
of conditional branches, as this is generally the greatest source of mispredictions. Since 2006, research in
branch prediction has progressed only slowly. A plausible reason is that modern branch predictors might be
close to a prediction accuracy limit. However, this is not certain either, as the only mathematically proven
limit is zero misprediction, which is still far from being attained.

Today, a highly accurate conditional branch predictor based on the published state of the art is either
TAGE-like [69], perceptron-based [35, 29], or a combination of those [66, 30]. Both types of predictors
have distinct advantages: TAGE exploits the limited predictor storage very efficiently, whereas perceptron-
based predictors can easily combine different sorts of input information.

This paper focuses on TAGE-like predictors. Except for the first branch prediction championship, which
was held in 2004 before TAGE was introduced [2], all four subsequent championships were won by pre-
dictors based on TAGE [3, 4, 5, 6]. It is not known with certainty which commercial processors implement
a TAGE-like predictor, as this information is rarely disclosed. Admittedly, a PPM-like predictor is imple-
mented in the IBM zEC12 [1] and a TAGE predictor is implemented in the Phytium Mars [82] and in the
IBM POWERO [26].

Although TAGE is a very accurate predictor, it does not exploit its input information perfectly, as signif-
icant prediction accuracy improvements are obtained by complementing TAGE with a statistical corrector
using the same input information [63]. The statistical corrector, even small, makes the whole predictor more
complex. More importantly perhaps, this imperfection of TAGE revealed by the statistical corrector is a hint
that our understanding of TAGE-like predictors is incomplete.



This paper proposes an alternative TAGE-like predictor, called BATAGE, making statistical correction
practically superfluous. BATAGE has the same global structure as TAGE but uses a different tagged-entry
format and different prediction and update algorithms.

Section 2 provides the historical and technical context for situating the contributions of BATAGE. Sec-
tion 3 analyzes the cold-counter problem, which is the main cause for TAGE needing statistical correction.
Section 4 proposes to replace the conventional up/down counter in TAGE with two counters counting sepa-
rately the taken and not-taken occurrences. A new method is proposed for estimating prediction confidence
using Bayesian probabilities. Section 5 describes the BATAGE predictor and its features, including

e anew prediction automaton called dual-counter,
e prediction and update algorithms exploiting the dual-counter and Bayesian confidence estimation,
e anew method called Controlled Allocation Throttling (CAT) for reducing the allocation frequency.

Finally, Section 6 provides an experimental evaluation of BATAGE.

2 A short history of conditional branch prediction

BATAGE is derived from TAGE, which is the result of decades of research in branch prediction. This section
provides a short history of conditional branch prediction. Its purpose is to furnish the historical and technical
context for situating the contributions of BATAGE.

Figure 1 illustrates the improvements in prediction accuracy over the years. It shows the average MPKI
(mispredictions per 1000 instructions) over the CBP 2016 traces for various branch predictors since 1993.
Appendix A provides a detailed legend of Figure 1.

2.1 The eighties

The bimodal predictor, that is, a table of up/down saturating counters accessed with a hash of the branch
address, was introduced by James E. Smith in the early eighties [70].!

In 1984, Johnny Lee and Alan Jay Smith proposed a branch prediction method consisting of branch
history bit vectors stored in the Branch Target Buffer (BTB) entries and used for accessing a prediction table
trained offline with representative workloads [40]. They were focusing on understanding the prediction
accuracy limits of this method. They did not describe a hardware implementation. Although Lee and Smith
mentioned in passing the possibility of having a global branch history (using today’s terminology), their
study focused on per-branch history bit vectors.

2.2 Two-level prediction

In a seminal paper published in 1991, Yeh and Patt proposed a branch predictor derived from Lee and Smith’s
method but using online instead of offline training [78]. They introduced the Pattern History Table (PHT), a
prediction table holding 2-bit up/down counters and accessed with the history bit vector of the branch being
predicted. They called this predictor Two-Level Adaptive. In the 1991 paper, Yeh and Patt considered only
per-branch (aka local) history bit vectors. The first papers describing a global-history predictor were pub-
lished in 1992 by Yeh and Patt [79] and by Pan, So and Rameh [50]. In a global-history predictor, there is a

'The 2-bit automaton used in the branch predictor of the S-1 computer built at the Lawrence Livermore Laboratory during the
seventies was not an up/down counter [40]. The S-1 automaton is generally less accurate than the 2-bit up/down counter [51, 78, 49].
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Figure 1: Average number of mispredictions per 1000 instructions (MPKI) for various conditional branch predictors
on the CBP 2016 traces for 8KB, 32KB and 64KB storage budgets (see Appendix A).



global history register shared by all the branches. Yeh and Patt generalized the label “Two Level”, including
global-history predictors as a special case [79, 80]. This first wave of two-level schemes culminated with the
gshare global-history predictor introduced by McFarling [42]. For several years, gshare was the reference
conditional branch predictor for its simplicity and high prediction accuracy.

2.3 Meta-prediction and de-aliasing techniques

In 1993, McFarling introduced meta-prediction, a method for combining several different prediction meth-
ods, leading to hybrid predictors more accurate than gshare [42]. As Figure 1 shows, the bimodal/gshare
hybrid predictor of 1993, and the improved version of 1994 [44], have an MPKI significantly lower than
gshare. More research on hybrid predictors was published in the following years [9, 10, 19, 18, 41].

During the same period, some papers studied the aliasing problem stemming from the limited branch
predictor size [74, 81, 53]. There was a wave of studies trying to overcome the aliasing problem [7, 72, 47,
39, 17]. This line of research culminated with the branch predictor of the Alpha EV8 processor [67], derived
from Seznec’s 2bc-gskew predictor [68].

The MPKIs of some emblematic “de-aliased” predictors are shown in Figure 1 (1997-1999). These
predictors are indeed more accurate than gshare. But compared against a well-tuned bimodal/gshare hybrid,
the accuracy of de-aliased predictors is not much better, if better at all. The discrepancy between Figure
1 and the progresses claimed in the original papers is perhaps due, in part, to the CBP 2016 traces having
different characteristics from the benchmarks used at the time. Still, the use of McFarling’s meta-predictor as
a de-aliasing technique was certainly overlooked back then. Nevertheless, research on de-aliased predictors
improved our understanding of branch prediction. Eventually, the lessons from de-aliased predictors led to
significant accuracy gains with the branch predictor of the Alpha EV8 processor (2bc-gskew-EV8 in Figure

1).

2.4 The Perceptron

In 1999-2000, two research teams, independently, started exploring the use of artificial neural networks for
branch prediction [77, 35]. In particular, Jiménez and Lin’s perceptron predictor had an important impact,
not so much for the demonstrated prediction accuracy as for the completely different, thought-provoking
branch prediction algorithm [35, 37]. Remarkably, the perceptron was the first branch predictor that could
take advantage of a global history longer than 60 branches. It started the trend toward very long global
histories.’

In their 2001 paper, Jiménez and Lin emphasized a limitation of the original perceptron: linear sepa-
rability. In the following years, several studies tackled linear separability [31, 56, 58, 32]. In particular,
Seznec’s RHSP was the first perceptron-based predictor to demonstrate a prediction accuracy substantially
better than that of de-aliased predictors [56, 58]. The hardware complexity of perceptron-based predictors
was greatly reduced in 2004 when, inspired from Seznec’s MAC-RHSP [58], Tarjan and Skadron with the
Hashed Perceptron [75, 76] and Seznec with the GEHL predictor [57, 59], decoupled the perceptron width
from the global history length.

20n the CPB 2016 traces, the average MPKI of an 8KB gshare is about 35% lower than that of a large bimodal predictor.
3 A recent study explains in detail how to implement a long global history [52].



2.5 TAGE

In 1996, Chen et al. considered adapting Prediction by Partial Matching (PPM), a data compression tech-
nique [13], to branch prediction [12]. More specifically, they applied PPM to local-history two-level pre-
diction, assuming a PHT with as many entries as the number of distinct local-history values of all possible
lengths up to a maximum length. Extra bits were stored in the PHT to detect cold PHT entries [11]. An-
other research team confirmed the potential of PPM for branch prediction, but without considering hardware
implementation constraints [20]. PPM was also proposed for indirect jump prediction [38].

Conventional BTBs feature tags [71, 25, 40], and in 1997-1998, when researchers started exploring
more sophisticated indirect jump predictors, the use of tags was an obvious option [8, 15, 14]. However, the
use of tags in conditional branch predictors was counterintuitive, as this meant much fewer 2-bit up/down
counters at equal storage. The fact that tags are a cost-effective option for conditional branch prediction
was discovered by McFarling with the serial-BLG predictor [43] and by Eden and Mudge with the YAGS
predictor [17].

In 2001, I introduced gtags, an approximation of PPM consisting of several cascaded YAGS using
increasing global history lengths* [46], somewhat similar to Driesen and Holzle’s multi-cascaded indirect
jump predictor [16], but for conditional branches. I observed that prediction accuracy increases with the
number of distinct global history lengths. However, at the time, it seemed difficult to implement a cost-
effective gtags with more than three tables. In particular, I noticed that freshly allocated entries sometimes
generated many mispredictions, a problem that I call today the cold-counter problem (see Section 3). In
2004, I submitted to the first branch prediction championship a predictor called PPM-like [45], which was
a 5-table gtags but with two key improvements (Figure 2). The first improvement was the introduction of a
u bit in each tagged entry for estimating the usefulness of that entry, in order to better manage the limited
predictor storage. The second improvement was the introduction of an m bit in tagless entries for controlling
the initialization of the up/down prediction counter upon allocation of a tagged entry, in order to mitigate
the cold counter problem. The PPM-like predictor was the first predictor not derived from the perceptron
with a prediction accuracy substantially better than that of de-aliased predictors (Figure 1, 8KB budget).

In 2005, Seznec improved the PPM-like predictor quite substantially, which led to TAGE [69]. Unlike
the PPM-like predictor, which uses a global history of branch directions, TAGE uses a path history [81, 48].
The key features distinguishing TAGE from PPM-like are:

e TAGE considers not only the longest matching path (pred), but also the second-longest matching one
(altpred).

e A tiny meta-predictor selects the final prediction between pred and altpred depending on the state of
the pred up/down counter. This is for tackling the cold counter problem. Upon tagged entry allocation,
the up/down counter is always initialized according to the branch outcome (TAGE has no m bit).

e Each tagged entry contains a u counter (generalization of the u bit).
e The pred entry is considered useful when it prevents the occurrence of a misprediction.
e The u counters are periodically decremented en masse so that dead entries are not locked forever.

e TAGE allocates a single entry per misprediction.

*In 2001, I quickly discarded the use of arithmetic progressions for the global history lengths and used a geometric progression
instead (8,16,32,64) [46]. The fact that a geometric progression is often close to optimal was discovered and emphasized by Seznec
a few years later [59, 69].
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Figure 2: The PPM-like predictor of CBP 2004 [2, 45].

All four branch prediction championships between 2006 and 2016 were won by André Seznec with a TAGE
based predictor. Figure 1 shows two TAGE versions, the original 2006 version, and the latest 2016 version
(see Appendix A). Seznec did a few changes over the years (in particular, he improved the management
of u counters in 2011 [63]), sometimes depending on the storage budget considered. Nevertheless, the
fundamentals of TAGE have not changed. The better accuracy of TAGE 2016 over TAGE 2006 is largely
due to TAGE 2016 having more banks (and path lengths) and using bank interleaving, where a tagged bank
is shared by several path lengths [62, 66].

2.6 Statistical correction

Gao and Zhou noticed that, in a PPM-like predictor, the longest match is not always the most accurate
[22], corroborating and generalizing what Seznec observed for TAGE [69]. The PMPM predictor they
submitted to CBP 2006 combined some GEHL features (geometric path lengths, perceptron algorithm,
adaptive threshold) with some TAGE features (tags, v counters) [22]. However, they did not succeed in
outperforming a well-tuned TAGE [3, 61].

In 2006, Seznec noticed that, for huge storage budgets, and using the same input information, GEHL out-
performs TAGE [60]. Later, he found that this was due to TAGE behaving suboptimally on hard-to-predict
branches, that is, weakly-biased branches with little or no global correlation. He proposed to complement
TAGE with a statistical corrector, and found that a perceptron-inspired predictor such as GEHL is a cost-
effective statistical corrector for TAGE [63]. Seznec won the last three championships with this kind of
predictor, called TAGE-SC [62, 65, 66].

Prediction accuracy has improved a lot since gshare: as shown in Figure 1, the 64KB TAGE-SC-L of
CBP 2016 has an average MPKI 43% lower than a 64KB gshare.’

51t should be recalled that the CBP rules do not limit predictor complexity besides a fixed storage budget. The 64KB TAGE-SC-
L of CBP 2016 features a TAGE with 30 interleaved tagged banks and a statistical corrector with 20 weight tables and 3 local-history
tables [66].



3 The cold counter problem

The cold counter problem is specific to PPM/TAGE-like predictors. Yet, although some features were in-
troduced in the PPM-like predictor and in TAGE to reduce it, the cold-counter problem was neither named
nor emphasized. I briefly mentioned some aspects of the problem in 2001 [46], and it was only implicit in
subsequent papers [45, 69]. The paper that introduced statistical correction seems to downplay the impor-
tance of the meta-predictor in TAGE (called USE_ALT_ON_NA) but does not explain that it is the statistical
corrector that renders the meta-predictor practically superfluous [63]. The importance of the meta-predictor,
which is real without the statistical corrector, is stated explicitly only in the source code of TAGE-SC-L in
2016 [6]. It is safe to say that the cold-counter problem has long been underestimated and did not receive
the attention it deserves. This section provides a mathematical analysis of the cold-counter problem.

Initially, an up/down counter has no information about the branch (or path) it is trying to predict. After
one occurrence of the branch, the up/down counter provides a prediction which is generally better than a
random guess. In fact, if the branch is biased very strongly toward one direction, an up/down counter trained
with a single occurrence of the branch is close to an ideal predictor for that branch. However, if the branch is
weakly biased, it may take many occurrences of the branch for the counter to guess the branch bias with high
confidence (assuming the counter is wide enough to record that amount of branch history). The number of
occurrences necessary to train a wide-enough counter can be surprisingly large, as can be seen by modeling
a single branch as a Bernoulli process, with probability ¢ for the branch to be taken: the probability M (n)
to mispredict the branch with a (wide-enough) up/down counter previously trained with n occurrences of
the branch is

n—1
2 n

for n odd, M(n) = M(n + 1) = Z <Z>qk+1(1 _ q)nfk + Z <Z>qk(1 _ q)nkarl
k=0 k

_n+1
-2

where it is assumed that the counter is initialized in state O when the first occurrence is taken, in state -1
when it is not taken.®

Figure 3 shows M (n) as a function of n, for ¢ = 0.1 and for ¢ = 0.3. The misprediction probability
decreases as we accumulate knowledge about the branch and, in the limit, approaches the optimal mispre-
diction probability min(g, 1 — ¢). However, convergence is slow. For prediction accuracy to be within 5%
of the optimal accuracy, it takes 8 occurrences of the branch with ¢ = 0.1, and 20 occurrences with ¢ = 0.3.

PPM/TAGE-like predictors suffer from the cold counter problem because they allocate tagged entries
on mispredictions, resetting the up/down counter of newly allocated entries. Worse, if there is no global
correlation, the up/down counter tends to be initialized in the wrong direction. In the PPM-like predictor,
the cold counter problem was somewhat mitigated by trying to initialize the up/down counter intelligently.
TAGE provided a more effective solution to the cold counter problem with the meta-predictor selecting
between the longest and second-longest matching paths. Nevertheless, TAGE does not solve the cold counter
problem completely. This is why Seznec obtained significant accuracy gains by combining TAGE with a
GEHL statistical corrector, as perceptron-based predictors such as GEHL barely suffer from the cold-counter
problem.

%The fact that M (n) decreases only on odd values of n can be understood intuitively as follows. The prediction from the counter
is a majority vote over the past n occurrences. When n is odd, the counter cannot change its prediction upon the n+1-th occurrence
unless the number of taken and not-take occurrences becomes equal, in which case the prediction is no better than a random guess.
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Figure 3: Tllustration of the cold counter problem: misprediction probability for a wide-enough up/down counter on
a branch having probability ¢ to be taken, as a function of the number of past occurrences.

4 Bayesian confidence estimation

While complementing TAGE with a statistical corrector is a possible solution to the cold-counter problem, it
increases the branch predictor complexity and the branch prediction delay. In this paper, I propose to solve
the cold-counter problem without a statistical corrector.

There are two fundamental reasons why the cold-counter problem exists in TAGE:

1. TAGE allocates tagged entries on nearly every branch misprediction.
2. TAGE cannot estimate precisely the “temperature” of an up/down counter.

This section addresses the second point (the first point is addressed in Section 5.6).

Upon a tagged entry allocation, the counter is initialized in state O if the branch is taken, in state -1 if
the branch is not taken. Subsequently, every time this entry is used to make a prediction, the counter is
incremented or decremented depending on the branch direction. If we find the counter in state -4, we are
sure that the counter has been updated at least 3 times after the initialization, so we know that the counter
is relatively warm. However, if we find the counter is state -1, we do not know if the counter has just been
initialized or has been updated multiple times. That is, we cannot distinguish between a cold counter and a
weakly biased branch.

Therefore, I propose to replace the up/down counter with two counters n; and ng counting respectively
the number of taken and not-taken occurrences. This way, the “temperature” of a tagged entry can be
estimated precisely. Incidentally, the introduction of n; and ng also permits removing the u counter (expla-
nation in Section 5.3). This change of tagged entry format, shown in Figure 4, is the foundation of BATAGE.
Upon a tagged entry allocation, n; and ng are both reset, and either n; or ng is incremented according to
the branch direction. On subsequent updates, 11 or ng increase depending on the branch direction (ignoring
for the moment the limited counter width). The prediction is given by the sign of ng — n;.

I propose to tackle the cold counter problem by associating prediction confidence levels with values of
n1 and ng. This way, when a tagged entry gives a low-confidence prediction, we can choose to ignore it and
go to the next hitting tagged entry.
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Figure 4: Tagged entry in TAGE (left) vs. BATAGE (right). The payload of a TAGE entry consists of an up/down
counter (typically, 3 bits) and a u counter (1 or 2 bits). The payload of a BATAGE entry consists of two counters 71
and ng (typically, 3 bits each) counting respectively the number of taken and not-taken occurrences.

4.1 Estimating branch predictability

In 1981, Smith observed that, when an up/down counter is saturated, this is an indication that the branch
prediction provided by that counter is likely to be correct [70]. Smith’s method can be generalized as follows.
Let x € [—2¢,2¢ — 1] be the value of the up/down counter. A fine-grained confidence level can be obtained
as |2z + 1|: the higher |2z + 1|, the more confident the prediction [64]. A coarse-grained confidence level
can obtained by comparing |2z + 1| with a threshold [36].

Defining confidence levels from two counters n; and ng is not as straightforward. Obviously, there
exists many different possibilities. Defining the confidence level as [ny — ng| is definitely not what we want,
as this would be practically equivalent to having an up/down counter. Instead, we would like to exploit the
information that n; and ng provide and that is not available from an up/down counter.

For example, let us consider two predictors giving different predictions:

e predictor A: n; = 2, ng = 0 (predict taken)
e predictor B: n; = 3, ng = 6 (predict not-taken)

Given that sole information, which predictor is the most reliable? If we were using [n; — ng| as confidence
level, we would select prediction B. However, there is nothing obvious here. Maybe we should trust predictor
A instead, even though it is colder. In fact, the question is not well defined. To answer it, we must make
some assumptions.

I propose to assume that a branch has a constant but unknown probability ¢ to be taken for a given
path, with ¢ uniformly distributed in [0, 1]. This assumption is somewhat arbitrary. Nevertheless it does not
introduce any bias toward taken or not-taken and it is consistent with the fact that we know nothing about
branches but what we learn through n; and ng. With this assumption, and using a Bayesian reasoning, it
is possible to define confidence levels. Let us start from a uniform prior distribution Py(q) = 1, and let us
apply Bayes’ theorem to obtain a posterior distribution P(g|n1,no):

P(ni,nolg) X Polg) _— P(n1,nolq)
[ P(n1,nolt)Po(t)dt [} P(n,nolt)dt

P(qln1,ng) =

As P(n1,nolg) = (") g™ (1 — q)™, we obtain

ni

q" (1 —q)"

P =
(Q‘nlano) B(n1 + ]-anO + 1)

where B(x,y) = fol t*=1(1 —¢)¥~1dt is the beta function. With the posterior distribution, we can obtain an
estimate of the misprediction probability, which we denote m. If n; < nyg, the prediction is not-taken, and
the misprediction probability is g, hence

B(n1 + 2,’/10 -+ 1)
B(n1 +1,n9+ 1)

1
- / 4P (gl no)dq —
0

9



ni
0 1 2 3 4 5 6 7
0.50 0.250.20 | 0.17 | 0.14 | 0.12 | 0.11
0.50 | 0.40 0.29 | 0.25 | 0.22 | 0.20
0.25 1 0.40 | 0.50 | 0.43 | 0.38 0.30 | 0.27
0.20 0.43 | 0.50 | 0.44 | 0.40 | 0.36
0.17 | 0.29 | 0.38 | 0.44 | 0.50 | 0.45 | 0.42 | 0.38
0.14 | 0.25 0.40 | 0.45 | 0.50 | 0.46 | 0.43
0.12 1 0.22 1 0.30 | 0.36 | 0.42 | 0.46 | 0.50 | 0.47
0.11 | 0.20 | 0.27 0.38 | 0.43 | 0.47 | 0.50

no

N AN BR| W N =S

Table 1: Estimator /m as a function of n; and ng (formula (1)).

If ny > ng, the prediction is faken, the misprediction probability is 1 — ¢, and we obtain a formula for
m similar to the one above but with n; and ng permuted. Using the properties of the beta function, more

precisely B(z + 1,y) = x%ryB(:v, y) and B(x,y) = B(y,x), we obtain the following simple formula:

1+ min(nl, no)
24+ n1+ no

m = 6]
Formula (1) is known as Laplace’s rule of succession. Notice that m = 1/2 when ng = n;. Table 1 gives
the value of m for n; and ng in [0, 7].

Estimator m provides an estimation of branch predictability, with low m meaning high confidence in
the prediction. Going back to the previous example, prediction A gives m(2,0) = 0.25, prediction B gives
m(3,6) ~ 0.36. Hence prediction A is deemed more reliable than prediction B.

It must be emphasized that m is an estimate of the misprediction probability, not the actual misprediction
probability, which is unknown to us. Moreover, there is no reason for ¢ to be uniformly distributed in [0, 1].
The actual distribution of ¢ is an empirical property depending on the application and on the path length. In
particular, m ignores global correlations, which tend to push ¢ away from 1/2. Nevertheless, I observed in
my experiments the practical efficacy of estimator m, which is the basis of the BATAGE (Bayesian TAGE)
predictor described in the following sections.

4.2 Defining confidence levels

BATAGE does not use the full spectrum of m values, but coarsens it into a few confidence levels: high,
medium and low. In this paper, medium confidence is synonymous with unknown predictability. Notice that
a single occurrence of a branch gives no information about its predictability. Therefore, the case n; +mng = 1
is a situation where predictability is unknown. This corresponds to m = 1/3, which is the natural threshold
to use here. This leads to the following confidence levels:

M <1/3 —> high
m=1/3 — medium
m>1/3 — low

Table 1 uses a color code for the confidence levels: red for high confidence, orange for medium confidence
and black for low confidence.
A hardware implementation does not need to compute m explicitly. It is sufficient to compute a value

10



counter width || 2 bits | 3 bits | 4 bits | 5 bits
predictor size 8KB | 12KB | 16KB | 20KB
average MPKI || 10.47 | 10.07 | 10.12 | 10.29

Table 2: MPKI of a 32k-entry bimodal predictor on the CBP 2016 traces.

m € {0, 1,2} directly from n; and ng:

=0 — high
1 — medium
m=2 — low

| 3 3

The 2-bit value m is obtained with simple combinational logic as follows. Define

medium = (n1=2no+1)) V (no=(2n1+1))
low = (n1<(2np+1)) A (ng<(2n1+1))

then 7 is the concatenation of bits low and medium:

m = 2 X low + medium

S BATAGE

Like TAGE, BATAGE does not name one particular predictor configuration but a predictor family based on
some common principles. This section describes those principles, focusing on what distinguishes BATAGE
from TAGE. The parts of the predictor that are not described are essentially similar to TAGE.

5.1 The dual-counter

So far, we have assumed that n; and ng can increase indefinitely. In practice however, the n; and ng counters
in a BATAGE entry are narrow (typically, 3 bits each), for the same reasons that TAGE has narrow prediction
counters: under limited storage, the statistical benefit of using wide counters is not high enough to justify
using storage for this, and using wide counters actually hurts prediction accuracy for certain branches not
behaving like a Bernoulli process. For instance, Table 2 gives the average MPKI of a large bimodal predictor
for different widths of the up/down counter. On the CBP 2016 traces, a large bimodal predictor is optimal
with 3-bit up/down counters. 5-bit counters are significantly worse than 3-bit counters because of non-
Bernoulli branch behaviors.
So we must deal with the fact that n1 and ng cannot exceed a limit nmax (with 3-bit counters, nmax =
7). BATAGE uses the following update method (C language):
if (taken) { // branch is taken
if (nl < nmax) nl++;
else if (n0>0) n0——;
} else { // branch is not taken
if (n0 < nmax) nO++;
else if (nl1>0) nl——;
}
In other words, the counter corresponding to the branch direction is incremented, unless that counter equals
nmaz, in which case the other counter is decremented if not null. I call (n1,n¢) and the algorithm above
the dual-counter automaton.
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It should be noted that, after having hit the limit nmax once, the dual-counter behaves like an up/down
counter with 2 X nmaz + 1 states. Although formula (1) was established assuming unlimited ng and nq,
BATAGE always uses the confidence levels shown in Table 1.

The dual-counter is used only in tagged entries, not in the tagless table, where this would be a waste of
storage. The tagless table of BATAGE contains conventional up/down counters, like TAGE.

5.2 BATAGE prediction algorithm

Let Ly, Lo, - - - , Lg denote the path lengths from shortest to longest, where G is the number of predefined
path lengths. Similar to TAGE, a BATAGE prediction starts by reading simultaneously the tagless entry and
the G tagged entries.

BATAGE computes the 2-bit confidence level 7; for all tagged entries ¢ € [1,G], as described in
Section 4.2. This computation is done in parallel with tag comparisons. When there is a tag miss at L;, we
set m; = 3.

We also define a confidence level Ty € {0, 1,2} for the tagless entry, as follows. The tagless entry of
BATAGE contains a 3-bit up/down counter = € [—4,3|. The value 7 is set according to the following
equivalence:

r 4 3 2 -1
ny 1 1 1 1
U 5 4 3 2
mg O O 1 2

D = DO
—_ = W =
S = B
S = | W

The BATAGE prediction algorithm is (C-like pseudo-code):

j =G

for (i=G—1; i>=0; i—) {
it (M < my) j=i;

}

// entry j provides the final prediction

In other words, the final prediction is provided by the entry with the smallest 7 value, with priority to
the longest path in case of equality. The prediction selection circuit of BATAGE is no more complex than
that of TAGE. A divide-and-conquer approach is possible, allowing a tree structure, as illustrated in Figure
5. Other implementations are possible. In some implementations, it might be advantageous to use a 3-bit
thermometer code for m (0 — 000, 1 — 001, 2 — 011, 3 — 111), which allows to compute the minimum
of multiple m values with a bitwise AND.

5.3 Decay mechanism

In TAGE, the w counter is for protecting useful entries against eviction. There are no u counters in BATAGE.
Instead, we use the confidence level as an indication of utility: a high confidence prediction is more likely
to be useful than a medium or low confidence one. More precisely, the following rule is used in BATAGE:

a tagged entry giving a high confidence prediction cannot be evicted.

Yet, a high confidence entry that is no longer used should not be locked forever. For such entry to become
evictable, there must be a way to decay it. We define the action of decaying an entry as follows (C language) :

if (nl > n0) nl—;
if (n0 > nl) n0—;

12



altpred | | pred BATAGE
prediction
meta
TAGE
prediction

Figure 5: Divide-and-conquer implementation of the prediction selection circuit for TAGE (left) and BATAGE (right).
The circuit for TAGE takes as input the hit/miss bit, the prediction bit, and the low-confidence bit (needed for the final
selection between pred and altpred). The circuit for BATAGE takes as input the 7 value (2 bits) and the prediction bit.
This example assumes 7 tagged banks. The path lengths increase from left to right. The leftmost input is the bimodal

entry.

entry action condition comment
. entries were skipped
Ly > Ly br;ﬁﬁ? tgirvz::tttilon always probably because they are
cold
Ly, = Lo
update with or Ly not high confidence
branch direction or Ly not high confidence
I or incorrect prediction from L,
p Lp > Lo
decay :LLS é: EEE igﬁgg‘;ﬁz entry is probably useless
and correct prediction from L,
I update with Ly > Lo improves prediction
" branch direction and L, not high confidence accuracy only slightly

Table 3: Updating the hitting entries. L is the tagless entry. L, is the path length that provided the BATAGE
prediction. Hitting entries are denoted Ly, (Lg is one of them). When L, > Lo, L,, denotes the longest L;, such that
Ly < Lp.

In other words, we decay an entry by decrementing its highest count, n; or ng. Decay leaves the numerator
in formula (1) unchanged but decreases the denominator. Hence decay increases m. In particular, decaying
a high confidence dual-counter multiple times eventually leads to a medium confidence state (see Table 1).
In practice, it is unnecessary to decay a dual-counter further than medium confidence.

5.4 Updating the hitting entries

Predictor update is done at the in-order retirement pipeline stage [63]. We define L1, Lo, - -- , Lg as in Sec-
tion 5.2. Moreover, let Ly denote the tagless entry. At update, BATAGE needs the following information:
which path length L, provided the BATAGE prediction (Section 5.2), and all the path lengths L;, corre-
sponding to a tag hit (including Lg). Table 3 describes how the hitting entries are updated. When L,, > Ly,
L,, denotes the longest Lj, such that Lj, < L,. Thatis, L, is the next hitting entry after the entry that pro-
vided the BATAGE prediction. Entries Lj, < L,, are not updated. Entries Lj, > L, are always updated with
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the branch direction, as described in Section 5.1. Those entries exist because shorter path lengths could not
deliver 100% accuracy, but they were skipped probably because they are cold. By being updated, they can
warm up and become useful. The dual-counter in entry L, is decayed when that entry is deemed useless,
that is, when L,, > Lg and the prediction from L,, is correct and L,, and L,, are both high confidence.

5.5 Allocating new entries

TAGE-like predictors allocate tagged entries on branch mispredictions because it is hoped that longer paths
will provide more accurate predictions. Allocating a tagged entry means setting the tag and initializing the
dual-counter according to the branch outcome (ng + n; = 1). Like TAGE, BATAGE allocates entries only
upon mispredictions, at retirement. BATAGE allocates at most one entry per misprediction, like the original
2006 TAGE.

Let L,, be the longest hitting path length (L,,, = Ly when there are no hits), and s > 1 a small random
number. The allocation algorithm selects the entry corresponding to the shortest path length L, > L4
such that the entry at L, is not high confidence (7m # 0). If such L, does not exist, no allocation is done,
and we set 7 = G + 1. Then, independent of allocation’s success, the entries L; € [Ly,+s, Ly—1] (which
are all high confidence) are decayed with probability PDEC, as described in Section 5.3. The best value of
PDEC is determined empirically. PDEC=1/4 works well on the CBP 2016 traces.

5.6 Controlled allocation throttling (CAT)

While Bayesian confidence estimation helps mitigate the cold-counter problem, it does not solve the root
cause, which is the allocation of tagged entries on every branch misprediction.

I observed that, on traces with hard-to-predict branches, prediction accuracy improves when the alloca-
tion probability is set to a value less than one, which I call allocation throttling. This observation is valid
both for TAGE and BATAGE. The problem is that allocation throttling degrades prediction accuracy severely
on some traces. In fact, an allocation probability of one, as in TAGE, is the best fixed allocation probability
on average.

The problem is to find the best allocation probability automatically. That is, we are looking for an effec-
tive controlled allocation throttling (CAT) method. After trying several methods that did not work, I made
progress toward a solution when I conjectured that one could tell whether there are too many or too few
allocations by looking at the global predictor state, more precisely the distribution of dual-counter states.
I noticed that, when entries are allocated too aggressively, many entries are in medium or low confidence
state, either because allocated entries are not reused, or because these entries are useless and kept in medi-
um/low confidence state by the update rules (Table 3). Conversely, medium/low confidence entries are very
few when the allocated entries are quickly reused and converted into high confidence entries. However, my
attempts to adjust allocation throttling to obtain a fixed number of medium/low confidence entries did not
produce good results. Then, I realized that what matters is not the absolute number of medium/low confi-
dence entries but their proportion with respect to the number of moderately high confidence entries. The
rest of this section provides a detailed description of the CAT method I found.

The main idea is to compare the amount of entries in a medium/low confidence state, denoted NHC (for
not high confidence), and the amount of entries in a moderately high confidence state, denoted MHC, where
MHC states are the states such that 0.17 < m < 1/3. That is, the MHC states are the high confidence states
from which are excluded ng = 0, n; > 4 and n; = 0, ng > 4 (see Table 1). MHC states are generally
transient states. Besides statistical fluctuations due to random branch behavior, allocation and decay are two
major causes for the existence of MHC entries.
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if (misprediction) {
r = random in [0 ,MINAP—1];
if (r >= ((cat«MINAP) /(CATMAX+1))) {
mhec = 0;
s = random in [1,SKIPMAX];
for (i=m+s; i < G; i++) {
if (m[i]<1/3) { // high confidence, protected
decay with probability PDEC;
if (m[i] >0.17) mhc++;
} else { // not high confidence, take the entry
overwrite tag;
initialize dual—counter;
cat = cat + 3 — 4 % mhc; // CATR=3/4
cat = min(CATMAX, max (0, cat));
break; // stop here
}
}
}
}

Figure 6: BATAGE allocation algorithm (C-like pseudo-code). L,, is the longest hitting path length, m[i] is the m
estimator for the entry at L;. The cat counter is initially set to zero.

When NHC entries significantly outnumber MHC entries, this is generally because allocation is easy
(little decay) but allocated entries stay in a medium or low confidence state, hence allocation is probably too
aggressive. Conversely, when MHC entries outnumber NHC entries, this is an indication that allocation is
difficult (much decay) and allocated entries quickly evolve toward a high confidence state, so allocation can
be more aggressive.

A possible implementation of CAT would be to monitor the fractions F}, and F,, of NHC and MHC
entries respectively. In practice though, we just want to know the ratio F,,/F;,. This ratio can be estimated
as follows. Upon an allocation attempt, the average number of skipped entries is 1/F,, — 1, neglecting the
fact that the number G of tagged banks is finite. The fraction of high confidence entries that are MHC is
F,,/(1 — F,). Hence the average number of skipped MHC entries is

1 Fr, Fy,
() -
F, 1-F, F,

which is the quantity we are looking for.

When the average number of skipped MHC entries is below a certain threshold CATR, the allocation
probability is decreased if possible. The allocation probability cannot fall below a value 1/MINAP. When
the average number of skipped MHC entries is greater than CATR, the allocation probability is increased if
possible. Typically, the optimal CATR value lies between 1/4 and 3/4 and it tends to increase with G.

Figure 6 describes the BATAGE allocation algorithm. The cat counter controls the allocation probability.
The allocation probability is 1 when cat is small, it is 1/MINAP when cat is close to CATMAX. The
maximum cat value, CATMAX, is typically much larger than the total number of tagged entries. The
predictor can warm up more quickly if cat is reset to zero when an application starts running.

6 Experimental evaluation

I evaluated BATAGE with the CBP 2016 simulation infrastructure, which provides a set of 220 traces for
tuning predictors and a distinct set of 440 traces for evaluating them [6].
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Figure 7: MPKI difference to 7KB TAGE for BATAGE, TAGE-GSC and BATAGE-GSC (higher is better). The traces
are sorted for each curve separately so that the curve is non-decreasing.

The average MPKIs of TAGE and BATAGE are shown in Figure 1 (2016 and 2017) for 8KB, 32KB and
64KB storage budgets. To obtain a stand-alone 8KB TAGE, I started from the 7KB TAGE embedded in the
8KB TAGE-SC-L that won CBP 2016 [66], and I tuned it without the statistical corrector. In particular, I
replaced 3-bit counters in tagged entries with 4-bit counters (this improves the average prediction accuracy)
and I scaled the predictor up to 8KB by increasing the number of banks and the number of path lengths.
For the 32KB and 64KB TAGE, I proceeded similarly but starting from the 56KB TAGE embedded in the
winning 64KB TAGE-SC-L.

The prediction accuracy gain of BATAGE over TAGE is modest on average, but tangible: it is roughly
equivalent to the accuracy gain that the 2001 perceptron brought over an e-gskew. The 8KB BATAGE even
matches the MPKI of the CBP 2016 winner, despite being simpler (no statistical corrector, no local history,
no loop predictor).

The rest of this section provides a detailed evaluation of BATAGE, focusing on a 7KB storage budget.
The 7KB TAGE component embedded in the 8KB TAGE-SC-L of CBP 2016 features two u bits per tagged
entry. After replacing the 3-bit up/down counter in the tagged entry of TAGE with a 4-bit counter, the tagged
entries of TAGE and BATAGE have the same payload size (6 bits). This way, the 7KB TAGE and BATAGE
configurations can be compared with equal tag size and equal number of entries and banks.

6.1 BATAGE does not need statistical correction

Figure 7 and Table 4 compare TAGE and BATAGE with and without a global-history statistical corrector
(GSC). The GSC is the 1KB statistical corrector implemented in the 8KB TAGE-SC-L of CBP 2016, but
with the local-history components disabled so that the effect is pure statistical correction. Figure 7 shows
the MPKI difference to the 7KB TAGE (higher is better) for the 440 traces. Table 4 provides the average
MPKI (arithmetic mean over the 440 traces).

BATAGE outperforms TAGE significantly on several tens of traces (rightmost part of the red curve). The
statistical corrector helps TAGE significantly, as expected [63]. The average MPKI of the 8KB TAGE-GSC
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predictor || TAGE | TAGE-GSC | BATAGE | BATAGE-GSC
size 7KB 8KB 7KB 8KB
MPKI 4.42 4.27 4.29 4.24

Table 4: Average MPKI of TAGE and BATAGE with and without statistical correction.

CAT enabled disabled
prediction selection || k=G+1 | k=2 | k=1 |k=G+1 | k=2 | k=1
MPKI 4.29 4.38 4.62 4.43 4.58 4.77

Table 5: BATAGE: impact of disabling CAT and restricting the prediction algorithm.

is very close to that of the 7KB BATAGE. However, the SKB BATAGE-GSC is only marginally better than
the 7KB BATAGE. In practice, BATAGE does not need statistical correction.

6.2 Controlled allocation throttling is an essential feature of BATAGE

Two features of BATAGE contribute to solve the cold-counter problem:
e Bayesian confidence estimation takes into account the “temperature” of tagged entries,
e Controlled allocation throttling decreases the number of allocations hence the number of cold entries.

The impact of the BATAGE prediction algorithm can be evaluated by restricting the selection of the final
prediction among the first k hitting entries. The case k = G + 1 is the BATAGE prediction algorithm. The
case k = 1 corresponds to selecting the prediction from the longest hitting path, as in the PPM-like predictor
[45]. The case kK = 2 corresponds to selecting between the longest and second longest hitting paths, as in
TAGE (but without a meta-predictor).

The impact of CAT can be evaluated by disabling it, that is, by setting the allocation probability equal to
one. When CAT is disabled and k is small, the use of decay in the update policy (Table 3) hurts prediction
accuracy because the safety net provided by the BATAGE prediction algorithm has been removed. In these
cases (no CAT, small k), the update policy must be modified so that the entry providing the final prediction
is always updated.”

Table 5 gives the average MPKI for the 7KB BATAGE and for configurations with CAT disabled and/or
a small k. Both disabling CAT and limiting & hurt prediction accuracy. Figure 8 shows, for each trace, the
MPKI degradation from disabling CAT. Several tens of traces benefit substantially from CAT (leftmost part
of the curve), and a few traces experience a degradation, yet barely noticeable (rightmost part of the curve).

CAT is an essential feature of BATAGE: without it, BATAGE would be no better than TAGE (compare
tables 4 and 5). The management of u counters in TAGE is very effective at preserving useful entries.
BATAGE has no u counter and instead relies on dual-counter decay. However, without CAT, dual-counters
are decayed too aggressively on certain traces. CAT is effective not only at reducing the number of alloca-
tions but also at adjusting decay intensity.

Figure 9 compares the number of allocations per 1000 instructions (APKI) of TAGE and BATAGE,
showing also the impact of disabling CAT. Without CAT, BATAGE would do more allocations than TAGE
on average. This is because TAGE does not allocate entries when the overall prediction is incorrect but

"However the use of decay is important for CAT, as it is one of the mechanisms allowing to detect useless allocations by keeping
useless entries in a medium confidence state.
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Figure 8: Impact of disabling controlled allocation throttling on a 7KB BATAGE.
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Figure 9: APKI difference to TAGE (higher means fewer allocations).
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Figure 10: Allocation throttling on TAGE. The dashed curves are for a fixed allocation probability. The curve labeled
“magic CAT” is for TAGE with a CAT counter provided by BATAGE.

BATAGE |—CAT counter TAGE prediction

Figure 11: Doing CAT “magically” on TAGE.

the prediction from the longest matching path is correct.® However, with CAT enabled, the number of
allocations is reduced dramatically on many traces (Figure 9, right part of the red curve).

6.3 CAT on TAGE?

Given the benefit brought by CAT on BATAGE, it would be satisfying to find a CAT method for TAGE.® The
dashed curves in Figure 10 show the prediction accuracy change when the allocation probability in TAGE
is set to a fixed value, here 1/2 and 1/4. Allocation throttling with a fixed allocation probability improves
prediction accuracy on certain traces but degrades it on other traces. In TAGE as in BATAGE, allocation
throttling must be controlled. However, the CAT method described in Section 5.6 relies on specificities of
BATAGE. It is not clear how TAGE could imitate BATAGE. This is a question for future research.

Nevertheless, it is possible to evaluate the potential prediction accuracy improvements that a hypothetical
CAT method would bring to TAGE. Figure 11 depicts the experiment I did. I simulated a BATAGE in
lockstep with TAGE, the cat counter of BATAGE being communicated to TAGE continuously so that TAGE
can set its allocation probability like BATAGE at every instant. The result of this experiment is shown in
Figure 10 as the solid red curve. The rightmost part of the curve shows that there is a potential for significant
improvement on several tens of traces, motivating future research on CAT for TAGE.

8This feature of TAGE decreases the number of allocations and brings modest MPKI reductions.
°In a private discussion I had with André Seznec in july 2017, he told me that he was aware of the potential benefit of allocation
throttling but had not found a way to control it.

19



7 Conclusion

The dual-counter is central to BATAGE. It permits solving the cold-counter problem by allowing Bayesian
confidence estimation and by providing a way to control allocation throttling. My original motivation for
getting rid of the u counter of TAGE was that the dual-counter needs more bits than a conventional up/down
counter, and keeping the u counter would have made the tagged entry larger. Although dual-counter decay
allows to recover some of the benefit of the u counter, the two mechanisms work differently, and perhaps
they provide distinct advantages. Maybe future advances on TAGE-like prediction will come from a better
understanding of the differences between TAGE and BATAGE. Nevertheless, dual-counter decay seems to
be essential for CAT to work on BATAGE. Finding a CAT method for TAGE is a topic for future research.

A Legend for Figure 1

Figure 1 shows the average MPKI (arithmetic mean over the CBP 2016 traces) of various conditional branch
predictors over the years, at 8KB, 32KB and 64KB storage budgets. The predictors are gshare [42], the
1993 bimodal/gshare hybrid [42], a bimodal/gshare where the meta-prediction table is accessed by hashing
together the branch address and the global branch history [44, 10], e-gskew [47], bimode [39], YAGS [17],
the original 2bc-gskew [68], a 2bc-gskew tuned along the lines of the Alpha EVS8 predictor [67, 55], the
original global-history perceptron [35], PBNP, [31], MAC-RHSP [58], PWL [32], O-GEHL [59], the PPM-
like predictor [45], TAGE [69], L-TAGE [61], PMPM [22], FTL [27], ISL-TAGE [62, 63], FTL++ [28],
OH-SNAP [33, 73], TAGE-SC-L [65, 66], SSHP [34], BEN [24, 23], MPP [29], and BATAGE (this paper).

All the predictors were evaluated on the 440 CBP 2016 traces [6]. Predictors whose name is followed by
the mention “CBP” in parentheses participated in a branch prediction championship. For these predictors, I
used the original source code written by the authors, downloaded from the championship’s web site. I did
not modify the source code except for the minimal modifications necessary to simulate the predictor under
the CBP 2016 simulation infrastructure.'® I could not simulate the winning predictor of CBP 2004 [21], as
it uses information not available in the CBP 2016 traces. Also, some CBP predictors are omitted for clarity.

For the 2bc-gskew-EV8, MAC-RHSP and TAGE 2006 predictors, I used the source code downloaded
from André Seznec’s website [54]. I obtained the TAGE 2016 predictor by disabling the statistical corrector
in Seznec’s CBP 2016 source code and by tuning TAGE parameters to fit the storage budget considered. I
implemented the other predictors from the descriptions provided in the original papers.

I tuned the non-CBP predictors using the 223 training traces of CBP 2016. This tuning was done by
varying the explicit parameters (for instance, the path length). I did not modify the original algorithms except
for the bimode and YAGS predictors, which I made slightly more accurate with algorithm modifications
simple enough to be considered part of the tuning.

All the non-CBP predictors and five CBP predictors (PPM-like, O-GEHL, L-TAGE, ISL-TAGE, BFN)
use only a global branch or path history as first history level. The predictors using the perceptron algorithm
are shown in red, those not using it in blue (the statistical corrector in ISL-TAGE and TAGE-SC-L is GEHL-
like).

19The CBP 2016 traces are based on the ARM architecture, while previous championships were based on the Intel x86 architec-
ture. Hence, for the old CBP predictors, I right-shifted every branch address by 2 bits.
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