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Abstract: This paper compares the performance of different approaches to tolerate
failures using checkpoint/restart when executed on large-scale failure-prone platforms.
We study (i) Rigid applications, which use a constant number of processors throughout
execution; (ii) Moldable applications, which can use a different number of processors
after each restart following a fail-stop error; and (iii) GridShaped applications, which are
moldable applications restricted to use rectangular processor grids (such as many dense
linear algebra kernels). For each application type, we compute the optimal number of
failures to tolerate before relinquishing the current allocation and waiting until a new
resource can be allocated, and we determine the optimal yield that can be achieved. We
instantiate our performance model with realistic applicative scenarios and make it publicly
available for further usage.
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Performance comparée des applications rigides et
élastiques sur des plates-formes de calcul

scientifique sujettes aux fautes

Résumé : Ce rapport compare l’efficacité de plusieurs approches pour
tolérer un certain nombre d’erreurs fatales et continuer l’exécution en util-
isant des techniques de checkpoint et redémarrage sur des plates-formes à
grande échelle. Nous étudions trois types d’applications: (i) les applica-
tions rigides, qui utilisent toujours le même nombre de processeurs durant
toute l’exécution; (ii) les applications élastiques, qui peuvent utiliser un
nombre différent de processeurs après chaque redémarrage dû à une erreur
fatale; et (iii) les applications devant s’exécuter sur une grille de processeur
(telles les noyaux d’algèbre linéaire dense). Pour chaque type, nous cal-
culons le nombre optimal d’erreurs fatales à tolérer avant d’interrompre
l’allocation courante et de se place en file d’attente de nouvelles ressources.
Nous déterminons aussi le rendement optimal qui peut être atteint. Nous
mettons en oeuvre notre modèle de performance avec des scénarios réalistes
inspirés des plates-formes actuelles, et nous le mettons à libre disposition
pour permettre à chacun d’explorer avec les paramètres de son choix.

Mots-clés : checkpoint, erreur fatale, application rigide, application
élastique, application devant s’exécuter sur une grille de processeurs, nombre
de processeurs mis en réserve, nombre d’erreurs tolérées, longueur optimale
d’une allocation.
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1 Introduction

Consider a long-running job that requests N processors from the batch
scheduler. Resilience to fail-stop errors1 is provided by a Checkpoint/Restart
(CR) mechanism, which is the de-facto standard approach for High-Performance
Computing (HPC) applications. After each failure, the application restarts
from the last checkpoint but the number of available processors decreases,
assuming the application can continue execution after a failure (e.g., using
ULFM [3]). Until which point should the execution proceed before request-
ing a new allocation with N fresh resources from the batch scheduler?

The answer depends upon the nature of the application. For a Rigid
application, the number of processors must remain constant throughout the
execution. The question is then to decide the number F of processors (out
of the N available initially) that will be used as spares. With F spares, the
application can tolerate F failures. The application always executes with
N−F processors: after each failure, then it restarts from the last checkpoint
and continues executing with N −F processors, the faulty processor having
been replaced by a spare. After F failures, the application stops when the
(F +1)st failure strikes, and relinquishes the current allocation. It then asks
for a new allocation with N processors, which takes a wait time, D, to start
(as other applications are most likely using the platform concurrently). The
optimal value of F obviously depends on the value of D, in addition to the
application and resilience parameters. The wait time typically ranges from
several hours to several days if the platform is over-subscribed (up to 10
days for large applications on the K-computer [21]). The metric to optimize
here is the (expected) application yield, which is the fraction of useful work
per second, averaged over the N resources, and computed in steady-state
mode (expected value for multiple batch allocations of N resources).

For a Moldable application, the problem is different: here we assume
that the application can use a different number of processors after each
restart. The application starts executing with N processors; after the first
failure, the application recovers from the last checkpoint and is able to con-
tinue with only N − 1 processors, albeit with a slowdown factor N−1

N . After
how many failures F should the application decide to stop2 and accept to
produce no progress during D, in order to request a new allocation? Again,
the metric to optimize is the application yield.

Finally, consider an application which must have a given shape (or a
set of given shapes) in terms of processor layout. Typically, these shapes
are dictated by the algorithm. In this paper, we use the example of a

1We use the terms fail-stop error and failure indifferently.
2Another limit is induced by the total application memory Memtot . There must remain

at least ` live processors such that Memtot ≤ ` ×Memind , where Memind is the memory
of each processor. We ignore this contraint in the paper but it would be straightforward
to take it into account.
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Figure 1: Example of node failures substituted by spare nodes in a 2-D
GridShaped application.

GridShaped application, which is required to execute on a rectangular
processor grid whose size can dynamically be chosen. Most dense linear al-
gebra kernels (matrix multiplication, LU, Cholesky and QR factorizations)
are GridShaped applications, and perform more efficiently on square pro-
cessor grids than on elongated rectangle ones. The application starts with
a square p × p grid of N = p2 processors. After the first failure, execution
continues on a p×(p−1) rectangular grid, keeping p−1 processors as spares
for the next p − 1 failures. After p failures, the grid is shrunk again to a
(p−1)× (p−1) square grid, and so on. We address the same question: after
how many failures F should the application stop working on a smaller pro-
cessor grid and request a new allocation, in order to optimize the application
yield?

The major contribution of this paper is to present a detailed performance
model and to provide analytical formulas for the expected yield of each
application type. We instantiate the model for several applicative scenarios,
for which we draw comparisons across application types. Our model is
publicly available [18] so that more scenarios can be explored. Notably,
the paper qualifies the optimal number of spares for the optimal yield, and
the optimal length of a period between two full restarts; it also qualifies
how much the yield and total work done within a period are improved by
deploying Moldable applications w.r.t. Rigid applications.

The rest of the paper is organized as follows. Section 2 provides an
overview of related work. Section 3 is devoted to formally defining the
performance model. Section 4 provides formulas for the yield of Rigid,
Moldable and GridShaped applications. These formulas are instanti-
ated through the applicative scenarios in Section 5, to compare the different
results. Finally, Section 6 provides final remarks and hints for future work.

RR n° 9174
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2 Related work

We first survey related work on checkpoint-restart in Section 2.1. Then we
discuss previous contributions on Moldable applications in Section 2.2.

2.1 Checkpoint-restart

Checkpoint/restart (CR) is the most common strategy employed to pro-
tect applications from underlying faults and failures on HPC platforms.
Generally, CR periodically outputs snapshots (i.e., checkpoints) of the ap-
plication global, distributed state to some stable storage device. When a
failure occurs, the last stored checkpoint is retrieved and used to restart the
application.

A widely-used approach for HPC applications is to use a fixed check-
point period (typically one or a few hours), but it is sub-optimal. Instead,
application-specific metrics can (and should) be used to determine the opti-
mal checkpoint period. The well-known Young/Daly formula [22, 7] yields
an application optimal checkpoint period,

√
2µC seconds, where C is the

time to commit a checkpoint and µ the application Mean Time Between
Failures (MTBF) on the platform. We have µ = µind

N , where N is the num-
ber of processors enrolled by the application and µind is the MTBF of an
individual processor [15].

The Young/Daly formula minimizes platform waste, defined as the frac-
tion of job execution time that does not contribute to its progress. The
two sources of waste are the time spent taking checkpoints (which moti-
vates longer checkpoint periods) and the time needed to recover and re-
execute after each failure (which motivates shorter checkpoint periods). The
Young/Daly period achieves the optimal trade-off between these sources to
minimize the total waste.

2.2 Moldable and GridShaped applications

Rigid and Moldable applications have been studied for long in the con-
text of scientific applications. A detailed survey on various application types
(Rigid, Moldable, malleable) was conducted in [9]. Resizing application
to improve performance has been investigated by many authors, includ-
ing [16, 5, 20, 19] among others. A related recent study is the design of a
MPI prototype for enabling tolerance in Moldable MapReduce applica-
tions [11].

The TORQUE/Maui scheduler has been extended to support evolving,
malleable, and Moldable parallel jobs [17]. In addition, the scheduler
may have system-wide spare nodes to replace failed nodes. In contrast, our
scheme does not assume a change of behavior from the batch schedulers and
resource allocators, but utilizes job-wide spare nodes: a node set including

RR n° 9174
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potential spare nodes is allocated and dedicated to a job at the time of
scheduling, that can be used by the application to restart within the same
job after a failure.

An experimental validation of the feasibility of shrinking application on
the fly is provided in [2]. In this paper, the authors used an iterative solver
application to compared two recovery strategies, shrinking and spare node
substitution. They use ULFM, the fault-tolerant extension of MPI that
offers the possibiliity of dynamically resizing the execution after a failure.
Finally, in [10, 13], the authors studied Moldable and GridShaped appli-
cations that continue executing after some failures. They focus on the per-
formance degradation incurred after shrinking or spare node substitution,
due to less efficient communications (and in particular collective communi-
cations). A major difference with our work is that these studies focus on
recovery overhead and do not address overall performance nor yield.

3 Performance model

This section reviews the key parameters of the performance model. Some
assumptions are made to simplify the computation of the yield. We discuss
possible extensions in Section 6.

3.1 Application/platform framework

We consider perfectly parallel applications that execute on homogeneous
parallel platforms. Without loss of generality, we assume that each processor
has unit speed: we only need to know that the total amount of work done
by p processors within T seconds requires p

qT seconds with q processors.

3.2 Mean Time Between Failures (MTBF)

Each processor is subject to failures which are IID (independent and identi-
cally distributed) random variables following an Exponential probability dis-
tribution of mean µind , the individual processor MTBF. Then the MTBF of
a section of the platform comprised of i processors is given by µi = µind

i [15].

3.3 Checkpoints

Processors checkpoint periodically, using the optimal Young/Daly period [22,
7]: for an application using i processors, this period is

√
2Ciµi, where Ci is

the time to checkpoint with i processors. We consider two cases to define
Ci. In both cases, the overall application memory footprint is considered
constant at Memtot , so the size of individual checkpoints is inversely linear
with the number of participating/surviving processors. In the first case, the
I/O bandwidth is the bottleneck (which is often the case in HPC platforms

RR n° 9174



Do moldable applications perform better? 7

– it takes only a few processors to saturate the I/O bandwidth); then the
checkpoint cost is constant and given by Ci = Memtot

τio
, where τio is the aggre-

gated I/O bandwidth. In the second case, the processor network card is the
bottleneck (which is the case for in-memory checkpointing, or checkpointing
to NVRAM), and the checkpoint cost is inversely proportional to number of
active processors: Ci = Memtot

τxnet×i , where τxnet is the available network band-

width, and Memtot
i the checkpoint size.

We denote the recovery time with i processors as Ri. For all simulations
we use Ri = Ci, assuming that the read and write bandwidths are identical.

3.4 Wait Time

Job schedulers allocate nodes to given applications for a given time. They
aim at optimizing multiple criteria (depending on the center policy) among
which fairness (balancing the job requests between users or accounts), plat-
form utilization (minimizing the number of resources that are idling), job
makespan (providing the answer as fast as possible). Combined with a high
resource utilization (node idleness is usually in the single digit percentage
for a typical HPC platform), a job has to wait a Wait Time (D) between
its submission and the begining of its execution.

Job schedulers implement the selection based on the list of submitted
jobs, each job defining how many processors it needs and for how long.
That definition is, in most cases, unchangeable: an application may use
less resource than what it requested, but the account will be billed for the
requested resource, and it will not be able to re-dimension the allocation
during the execution.

Thus, if after some failures, an application has not enough resource left
to efficiently complete, it will have to relinquish the allocation, and request
a new one. During the wait time D, the application does not execute any
computation to progress towards completion: its yield is zero during D
seconds.

4 Expected yield

This section is the core of the paper. We compute the expected yield for
each application type, Rigid, Moldable and GridShaped.

4.1 Rigid application

We first consider a Rigid application that can be parallelized at compile-
time to use any number of processors but cannot change this number until
it reaches termination. There are N processors allocated to the application.
We use N−F for execution and keep F as spares. The execution is protected
from failures by checkpoints of duration CN−F . Each failure striking the

RR n° 9174
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application will incur an in-place restart of duration RN−F , using a spare
processor to replace the faulty one. However, when the (F + 1)st failure
strikes, the job will have to stop and perform a full restart, waiting for a
new allocation of N processors to be granted by the job scheduler.

We define TR as the expected duration of an execution period until the
(F + 1)st failure strikes. The first failure is expected to strike after µN
seconds, the second failure µN−1 seconds after the first one, and so on.
Without any overhead, the length of a period would be

∑N−F
i=N µi. Except

for the last failure, each failure incurs some overhead only if it strikes the
application. This happens with probability N−F

i , where i is the current num-
ber of live processors. In that case, the failure requires a restart and some
re-execution, namely half the checkpoint period in average. The application
always uses N −F processors, hence the checkpoint period remains equal to√

2CN−FµN−F —as a first-order approximation, we assume that no failure
occurs during restart and re-execution, thereby neglecting the probability
of two failures within a short time window. On the contrary, if the failure
strikes a spare, there is no overhead. The last failure always requires a wait
time, and then a restart and re-execution. Therefore, we derive:

TR =
N−F∑
i=N

µi+
N−F+1∑
i=N

N − F
i

(
RP +

√
2CN−FµN−F

2

)
+D+RP+

√
2CN−FµN−F

2

What is the total amount of work WR computed during a period? Dur-
ing the sub-period of length µi, there are µi√

2CN−FµN−F
checkpoints, each

of length CN−F , and each processor works during µi

1+
CN−F√

2CN−F µN−F

seconds.

There are N − F processors at work, hence

WR = (N − F ) ·
N−F∑
i=N

µi

1 +
CN−F√

2CN−FµN−F

During the duration TR of the period, in the absence of failures and
protection, the application could have used all N processors to compute.
Thus the effective yield with protection for the application during TR is
reduced to YR:

YR =
WR

N · TR

4.2 Moldable Application

We now consider a Moldable application that can use a different num-
ber of processors after each restart. The application starts executing with
N processors; after the first failure, the application recovers from the last

RR n° 9174
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checkpoint and is able to continue with only N − 1 processors after paying
the restart cost RN−1, albeit with a slowdown factor N−1

N of the parallel
work per time unit.

We define TM as the expected duration of an execution period until
the (F + 1)st failure strikes. Without any overhead, the length of a period
would be

∑N−F
i=N µi, the same as for Rigid applications. But there are few

differences. First, each failure strikes the application, since it always uses all
live processors. Second, the checkpoint period increases after each failure,
since the number of live processors decreases. Third, the re-execution after a
failure (except the last one) incurs a slowdown factor because we move from
i processors to i − 1 processors. Fourth and finally, the re-execution after
the last failure is performed faster, because there are more live processors.
Altogether, we derive that

TM =
N−F∑
i=N

µi+
N−F+1∑
i=N

(
Ri−1 +

i

i− 1
·
√

2Ciµi
2

)
+D+RN+

N − F
N

√
2CN−FµN−F

2

To compute the total amount of work WM during a period, we proceed
as before and consider each sub-period. During the sub-period of length µi,
there are µi√

2Ciµi
checkpoints, each of length Ci, and each processor works

during µi

1+
Ci√
2Ciµi

seconds. And there are i processors at work during that

sub-period. Altogether:

WM =
N−F∑
i=N

i× µi

1 + Ci√
2Ciµi

The yield of the Moldable application is then:

YM =
WM

N · TM

4.3 GridShaped application

Finally, we consider a GridShaped application, defined as a moldable ex-
ecution which requires a rectangular processor grid. The application starts
with a square p × p grid of N = p2 processors. After the first failure, exe-
cution continues on a p× (p− 1) rectangular grid, keeping p− 1 processors
as spares for the next p − 1 failures. After p failures, the grid is shrunk
again to a (p− 1)× (p− 1) square grid, and the execution continues on this
reduced-size square grid. After how many failures F should the application
stop, in order to maximize the application yield?

The derivation of the expected length of a period and of the total work
is more complicated for GridShaped than for Rigid and Moldable. To

RR n° 9174
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simplify the presentation, we outline the computation of the yield only for
values of F of the form F = 2pf + 1, hence p2 = F + (p − f)2, meaning
that we stop shrinking and request a new allocation when reaching a square
grid of size (p − f) × (p − f) for some value of f < p to be determined.
Obviously, we could stop after any number of faults F , and the publicly
available software [18] shows how to compute the optimal value of F without
any restriction.

We start by computing an auxiliary variable: the expected time TG(p1, p2)
to move from a p1× p2 grid to a (p1− 1)× p2 grid, where p1 ≥ p2. Without

restart and re-execution, this time is
∑(p1−1)p2

i=p1p2
µi. The first failure calls

for a restart Rp1p2 and re-execution (at a reduced pace on less resources) of

duration p1
p1−1

√
2Cp1p2µp1p2

2 . The jth failure, for 2 ≤ j ≤ p2, will strike the

application with probability (p1−1)p2
p1p2−j+1 , because it is using (p1 − 1)p2 proces-

sors and keeping p1 − j + 1 spares. The checkpoint period evolves with the
number of processors, just as for Moldable applications. We derive:

TG(p1, p2) =

(p1−1)p2+1∑
i=p1p2

µi

+R(p1−1)p2 +
p1

p1 − 1

√
2Cp1p2µp1p2

2

+

(p1−1)p2+1∑
i=p1p2−1

(p1 − 1)p2
i

[
R(p1−1)p2 +

√
2C(p1−1)p2µ(p1−1)p2

2

]

Going from p2 processors down to (p−f)2 processors thus require a time

TG =

f−1∑
g=0

[TG(p− g, p− g) + TG(p− g, p− g − 1)]

+ µ(p−f)2 +D +Rp2 +
(p− f)2

p2

√
2C(p−f)2µ(p−f)2

2

The last restart and sped-up re-execution are the same as for Rigid or
Moldable applications.

Similarly, we define the auxiliary variable WG(p1, p2) as the parallel work
when moving from a p1 × p2 grid to a (p1 − 1) × p2 grid, where p1 ≥ p2.
There are p1p2 processors working during the first sub-period, and (p1−1)p2
during the following ones. We readily obtain

WG(p1, p2) = p1p2µp1p2

(
1− Cp1p2√

2Cp1p2µp1p2

)

+

(p1−1)p2+1∑
i=p1p2−1

(p1 − 1)p2µi

(
1−

C(p1−1)p2√
2C(p1−1)p2µ(p1−1)p2

)
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Going from p2 processors down to (p− f)2 processors thus corresponds to a
total work

WG =

f−1∑
g=0

(WG(p− g, p− g) +WG(p− g, p− g − 1))

+ (p− f)2 × µ(p−f)2

(
1−

C(p−f)2√
2C(p−f)2µ(p−f)2

)

The yield of the GridShaped application is then:

YG =
WG

N · TG

where N = p2.

5 Applicative scenarios

We consider several applicative scenarios in this section. We start with a
platform inspired from existing ones in Section 5.1 and then we study the
impact of several key parameters in Section 5.2.

5.1 Main scenario

As a main applicative scenario, we consider a platform with 22,250 nodes
(1502), with a node MTBF of 20 years, and an application that would take 2
minutes to checkpoint (at 22,250 nodes). In other words, we let N = 22, 500,
µind = 20y and Ci = C = 120s. These values are inspired from existing
platforms: the Titan supercomputer at OLCF [12], for example, holds 18,688
nodes, and experiences a few node failures per day, implying a node MTBF
between 18 and 25 years. The filesystem has a bandwidth of 1.4TB/s, and
nodes altogether aggregate 100TB of memory, thus a checkpoint that would
save 30% of that system should take in the order of 2 minutes to complete.
In other words, Ci = C = 120 seconds for all i ≤ 18, 688.

Figure 2 shows the yield that can be expected if doing a full restart after
an optimal number of failures, as a function of the wait time, for the three
kind of applications considered (Rigid, Moldable and GridShaped). We
also plot the expected yield when the application experiences a full restart
after each failure (NoSpare). First, one sees that the three approaches
that avoid paying the cost of a wait time after every failure experience a
comparable yield, while the performance of the NoSpare approach quickly
degrades to a small efficiency (30% when the wait time is around 14h).

The zoom box to differentiate the Rigid, Moldable and GridShaped
yield shows that the Moldable approach has a slightly higher yield than the
other ones, but only for a minimal fraction of the yield. This is expected, as

RR n° 9174



Do moldable applications perform better? 12

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

Y
ie
ld

Wait Time (h)

Rigid
Moldable

GridShaped
NoSpare

 0.89

 0.895

 0.9

 0.905

 0.91

 0  2  4  6  8  10 12 14 16 18 20

Y
ie
ld

Wait Time (h)

Figure 2: Optimal yield as function of the wait time, for the different types
of applications.

the Moldable approach takes advantage of all living processors, while the
GridShaped and Rigid approaches sacrifice the computing power of the
spare nodes waiting for the next failure. However, the size of the gain is small
to the point of being negligible. The GridShaped approach experiences a
yield that changes in steps, oscillating around the Moldable yield. Both
these phenomenons are explained by the next figure.

Figure 3 shows the number of failures after which the application should
do a full restart, to obtain an optimal yield, as a function of the wait time,
for the three kind of applications considered. We observe that this optimal
is quickly reached: even with long wait times (e.g. 10h), 200 to 250 failures
(depending on the method) should be tolerated within the allocation before
relinquishing it. This is small compared to the number of nodes: less than
1% of the resource should be dedicated as spares for the Rigid approach,
and after losing 1% of the resource, the Moldable approach should request
a new allocation.

This is remarkable, taking into account the poor yield obtained by the
approach that does not tolerate failures within the allocation. Even with a
small wait time (assuming the platform would be capable of re-scheduling
applications that experience failures in less than 2h), Figure 2 shows that the
yield of the NoSpare approach would decrease to 70%. This represents a
waste of 30%, which is much higher than the recommended waste of 10% for
resilience in the current HPC platforms recommendations [6, 4]. Compar-
atively, provisioning, within the allocations, only 1% of additional resource
would allow to maintain a yield at 90%, for every approach considered.

The GridShaped approach experiences steps that correspond to using
all the spares created when redeploying the application over a smaller grid

RR n° 9174
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Figure 3: Optimal number of failures tolerated between two full restarts, as
function of the wait time, for the different types of applications.

before relinquishing the allocation. As illustrated in Figure 2, the yield
evolves in steps, changing the slope of a linear approximation radically when
redeploying over a smaller grid. This has for consequence that the maximal
yield is always at a slope change point, thus at the frontier of a new grid
size. It is still remarkable that even with very small wait times, it is more
beneficial to use spares (and thus to lose a full row of processors) than to
redeploy immediately.

Figure 4 shows the maximal length of an allocation: after such duration,
the job will have to fully restart in order to maintain the optimal yield.
This figure illustrates the real difference between the Rigid and Moldable
approaches: although both approaches are capable of extracting the same
yield, the Moldable approach can do so with significantly longer periods
between full restarts. This is important when considering real life applica-
tions, because this means that the applications using a Moldable approach
have a higher chance to complete before the first full restart, and overall will
always complete in a lower number of allocations than the Rigid approach.

Finally, Figure 5 shows an upper limit of the duration of the wait time in
order to guarantee a given yield for the three applications. In particular, we
see that to reach a yield of 90%, an application which would restart its job at
each fault would need that restart to be done in less than 6 minutes whereas
the Rigid and GridShaped approaches need a full restart in less than 3
hours approximately. This bound goes up to 7 hours for the Moldable
approach. In comparison, with a wait time of 1 hour, the yield obtained
using NoSpare is only 80%. This shows that, using these parameters,
it seems impossible to guarantee the recommended waste of 10% without
tolerating (a small) number of failures before rescheduling the job.
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Figure 4: Optimal length of allocations, for the different types of applica-
tions.
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Figure 5: Maximum wait time allowed to reach a target yield.
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Figure 6: Yield and optimal allocation length of as a function of the wait
time with N = 350× 350, and C = 30 minutes.

5.2 Varying key parameters

We performed extensive simulations to assess the impact of key parameters.
We tried all combinations of MTBF (5 years, 10 years, 20 years, 50 years),
checkpointing cost (2 minutes, 10 minutes, 30 minutes, 60 minutes) and
application size (50 × 50 = 2500, 150 × 150 = 22500, 250 × 250 = 62500,
350× 350 = 122500). Not all results are presented for conciseness, but they
all give very similar results compared to the main scenario of Section 5.1.

Figure 6 shows the yield and the corresponding allocation length for two
(extreme) values of the MTBF, when using the largest application size N =
350×350. The top subfigure is for µind = 5 years while the bottom subfigure
is for µind = 50 years. As expected, the yield increases when the MTBF
decreases. However, the variation of µind only slightly impacts the allocation
length (which stays around 100 days for the Moldable approach with a
wait time of 4 hours). The only major difference is for the GridShaped,
whose allocation length closely follows that of Moldable: when the MTBF
is low, it is better to tolerate a larger number of failures before resubmission.
Since the size of the steps are defined by the application size, the impact on
the allocation length becomes smaller when there are more errors.

Figure 7 shows the optimal number of faults to tolerate for the four
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Figure 7: Optimal number of faults before rescheduling the application for
different application sizes.

different application sizes (with µind = 10 years and Ci = C = 10 minutes).
We can see from this experiment that the number of tolerated failures stays
within a small pourcentage of the total number of processors. In particular,
the last step of the GridShaped application corresponds to ≈ 2% of the
total application size in all the four cases.

Figure 8 aims at showing the impact of the checkpointing cost on the
allocation length. The trend is that a higher checkpointing cost induces
a longer allocation length. This can be explained by the fact that the al-
location length takes into account the checkpoint/restart strategy into its
computation. Thus longer checkpoints induces more time spent for an equiv-
alent work done. Overall, the impact of the checkpointing cost stays minimal
compared to the impact of the wait time or the MTBF.

Finally, Figure 9 describes the yield obtained when using different models
for the checkpointing cost: either the checkpoint is constant (independent
of the number of processors: left figure) or it is inversely proportional to
the number of processors (right figure). As these plots show, the difference
between the two models does not have a noticeable impact on the yield of
the applications. This can be explained as follows: as Figure 7 showed, only
a small number of faults is allowed before resubmission, in comparison to
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Figure 8: Optimal number of faults before rescheduling the application for
different checkpointing costs.
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Figure 9: Constant checkpoint cost (Ci = 60 min) on the left, and increasing
checkpoint cost (Ci = N

i × 60 min) on the right, with µind = 5 years and
N = 350× 350.

the application size. Changing the number of active processors by a few
percentage does not really make a difference for the checkpoitnt cost, which
remains almost the same in both models.

6 Conclusion

In this paper, we have compared the performance of Rigid, Moldable and
GridShaped applications when executed on large-scale failure-prone plat-
forms. For each application type, we have computed the optimal number
of faults that should be tolerated before requesting a new allocation, as a
function of the wait time. Through realistic applicative scenarios inspired by
state-of-the-art platforms, we have shown that the three application types
experience an optimal yield when requesting a new allocation after experi-
encing a number of failures that represents a small percentage of the initial
number of resources (hence a small percentage of spares for Rigid applica-
tions), and this even for large values of the wait time. On the contrary, the
NoSpare strategy, where a new allocation is requested after each failure,
sees its yield dramatically decrease when the wait time increases. We also
observed that Moldable applications enjoy much longer execution periods
in between two re-allocations, thereby decreasing the total execution time
as compared to Rigid applications (and GridShaped applications lying in
between).

Future work will be devoted to exploring more applicative scenarios. We
also intend to extend the model in several directions. On the application
side, we aim at dealing with non-perfectly parallel applications but instead
with applications whose speedup profile obeys Amdahl’s law [1]. We will
also introduce a more refined speedup profile for GridShaped applications,
with an execution speed that depends on the grid shape (a square being
usually faster than an elongated rectangle). On the resilience side, we will
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address forward-recovery schemes, such as ABFT [14, 8], in replacement of,
or in combination with, checkpoint-restart techniques.
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