
HAL Id: hal-01800123
https://hal.inria.fr/hal-01800123

Submitted on 25 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Block Placement Strategies for Fault-Resilient
Distributed Tuple Spaces: An Experimental Study
Roberta Barbi, Vitaly Buravlev, Claudio Mezzina, Valerio Schiavoni

To cite this version:

Roberta Barbi, Vitaly Buravlev, Claudio Mezzina, Valerio Schiavoni. Block Placement Strategies for
Fault-Resilient Distributed Tuple Spaces: An Experimental Study. 17th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS), Jun 2017, Neuchâtel, Switzerland.
pp.67-82, �10.1007/978-3-319-59665-5_5�. �hal-01800123�

https://hal.inria.fr/hal-01800123
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Block placement strategies for fault-resilient distributed
tuple spaces: an experimental study

(Practical experience report)

Roberta Barbi1, Vitaly Buravlev2,
Claudio Antares Mezzina2, and Valerio Schiavoni1

1 Université de Neuchâtel, Switzerland froberta.barbi,valerio.schiavonig@unine.ch
2 IMT School for Advanced Studies Lucca, Italy

fclaudio.mezzina,vitaly.buravlelg@imtlucca.it

Abstract. The tuple space abstraction provides an easy-to-use programming pa-
radigm for distributed applications. Intuitively, it behaves like a distributed shared
memory, where applications write and read entries (tuples). When deployed over
a wide area network, the tuple space needs to efficiently cope with faults of links
and nodes. Erasure coding techniques are increasingly popular to deal with such
catastrophic events, in particular due to their storage efficiency with respect to
replication. When a client writes a tuple into the system, this is first striped into
k blocks and encoded into n > k blocks, in a fault-redundant manner. Then, any
k out of the n blocks are sufficient to reconstruct and read the tuple. This pa-
per presents several strategies to place those blocks across the set of nodes of a
wide area network, that all together form the tuple space. We present the perfor-
mance trade-offs of different placement strategies by means of simulations and a
Python implementation of a distributed tuple space. Our results reveal important
differences in the efficiency of the different strategies, for example in terms of
block fetching latency, and that having some knowledge of the underlying net-
work graph topology is highly beneficial.

1 Introduction

We are currently observing a deluge of data originated by our personal devices. Dis-
tributed applications must be able to efficiently collect, store, process and expose data.
When dealing with such applications, developers need to settle on a specific program-
ming model, to i) facilitate the implementation of such systems and ii) retain user-
friendliness and ability to scale, both horizontally and geographically. Distributed stor-
age systems are one prominent example of such applications. They are typically oper-
ated across wide area networks, such as Amazon AWS, which currently spans across 15
geographical regions.3 In such deployment scenarios, applications must transparently
tolerate faults, a common threat for distributed systems.

A trivial strategy to tolerate faults is to rely on replication. Block replication ob-
viously entails a huge storage overhead. A state-of-the-art solution to decrease such
overhead while providing the same level of fault-tolerance is to use erasure coding

3 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

techniques [15]. With a systematic (n;k) linear code, each codeword (an element of
the linear code) consists of n blocks: k source blocks for the original data, and n � k
redundant blocks. The storage overhead is n�k

k , and if the code is Maximum Distance
Separable (MDS) [15], any k of the n blocks are necessary and sufficient to recover the
original data.

From a fault tolerance point of view, it is optimal to place the n blocks of a codeword
on different logical units (with respect to failures), so that the MDS code can tolerate up
to n � k failures. A logical unit can be a single node (in this case for the optimum it is
sufficient to place different blocks of a codeword on different nodes), but it can also be a
cluster of nodes (e.g. a set of machines physically hosted in a single room can go down
at the same moment if the cooling system of the room fails). In this second scenario, one
is tempted to spread different blocks of a codeword into separate and faraway clusters.
Although being optimal with respect to fault tolerance, this solution affects negatively
the latency to fetch the required blocks.

The case of distributed tuple spaces. A programming model can be made of two
separate pieces: the computation model and the coordination model. The computation
model allows programmer to build a single computational unit, while the coordination
model is the glue that binds separate activities into an ensemble [10]. The tuple space
paradigm, based on this idea, offers a flexible technique to program parallel and dis-
tributed systems, by providing the abstraction of a shared space where all the processes
can access. In this model, communication between processes is indirect and anony-
mous as it is done through the shared (distributed) space. Moreover, data exists in a
tuple space and do not belongs to any process. Despite the simplicity of the model, very
few implementations of tuple spaces offer fault tolerant facilities usually in the form of
data replication ([16, 4]), with the drawbacks of space overhead and consistency main-
tenance. In this paper, we consider an extended, distributed tuple space system with
erasure-coding capabilities. A tuple to be inserted in the tuple space is erasure-coded
and its blocks are placed across the nodes joining the tuple space group.

Contributions. First, we study how to distribute the encoded blocks of single code-
words over a large-scale network, in order to decrease the fetch latency. We do so by
designing and evaluating several different block placement heuristics, over synthetic
and real-world network topologies. Second, we evaluate how the proposed heuristics
behave with respect to data loss when injecting faults into the topology. Third, we lever-
age the results of our simulations to identify two suitable placement strategies that we
deploy atop a simple distributed tuple space system with the aim of evaluating their
performance in a practical setting.

This paper is organized as follows. First, we present the related work (Section 2).
Next, Section 3 introduces the tuple space paradigm. In Section 4 we describe the block
placement heuristics. Section 5 presents some modeling results that we leverage to drive
the prototype implementation. Section 6 presents its implementation details and the
extensions done to support both erasure-coding techniques and a pluggable mechanism
to choose among the different placement strategies. We present the evaluation of the
complete prototype in Section 7. We conclude in Section 8.

2 Related work

The tuple space coordination model is very appealing for distributed systems thanks
to its space and time decoupling and its synchronization power. As a consequence,
researchers have tried to add fault-tolerance and security to tuple spaces.

One recent result is DEPSPACE [3], a Byzantine fault-tolerant coordination service,
which employs process replication for handling crashes and providing fault tolerance.

An alternative to process replication is block replication which entails the problem
of block placement.

Block placement policies have been mainly studied in MapReduce contexts such as
Hadoop [18]. The main purpose of Hadoop’s data placement policy is to provide good
balance between reliability, write bandwidth, read performance and load balancing [19].
Placing all replicas on a single node incurs the lowest write bandwidth penalty but it
lacks redundancy: if the node fails, data is lost. On the other hand, placing replicas in
different data centers maximize redundancy, but at the cost of bandwidth.

Hadoop’s default strategy is to place the first replica on the same node as the client
(for clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first, chosen at random. The third replica goes to the same rack
as the second, but on a different node. Further replicas are placed on random nodes on
the cluster, although Hadoop’s block scheduler avoids placing too many replicas on the
same rack. Our cluster-aware and distance-aware strategies share some similarity with
this approach, in that they take into account zones of the system that are more sensitive
to simultaneous failures. Several enhancement were introduced in Hadoop with respect
to block placement policies, such as pluggable policies (since v0.21) or guarantees of
even distributions across the cluster (since v0.17). We envision a similar technique to
rebalance blocks of the tuple space according to the announced load ratio.

COHADOOP [7] is a lightweight Hadoop extension that gives applications a fine-
grain control of data location. Similarly, our scheduling policies allow deployers to
choose the destination of the blocks according to different performance criteria.

ADAPT [13] introduced a strategy to mitigate availability heterogeneity issues in
non-dedicated distributed computing environments. ADAPT dynamically dispatches data
blocks according to hosts’ storage capacities. Through simulations, this strategy is
shown to reduce the application runtime by more than 30%, increasing data locality
and reducing data migration cost, even though the improvement of performances is less
significant for environment with higher network connectivity.

3 Tuple Spaces in a Nutshell

The tuple space paradigm, made popular by Linda [9], is an abstraction of shared as-
sociative memory for parallel and distributed computing. A tuple space is a repository
of tuples that processes can concurrently access via pattern-matching. Processes create
new tuples (out or write operation), test the existence of a tuple (read) and consume a
tuple (via the in operation). The simplicity of this coordination model makes this model
intuitive and easy to use, also for distributed applications. In fact, some synchronization

Local TS

a

c d

Local TS

Local TS

Local TS

b

Local TS

a

c d

Local TS

Local TS

Local TS

b

ReadWrite

Fig. 1: Example of distributed tuple space: each node writes tuples in its own local tuple
space (left) and read tuples from local and remote nodes (right).

primitives (e.g. semaphores, synchronization barriers) can be easily implemented [6]
leveraging this coordination model. Tuple space interaction model provides time and
space decoupling, in that tuple producers and consumers remain anonymous with re-
spect to each other [8]. Moreover a tuple has to survive its producer’s termination,
which can be caused by a node crash or due to the ending of the normal execution.
In a distributed tuple space, each node writes tuples in its own local space, but it can
read tuples also from remote ones. For example, in Figure 1 node D reads also the tuple
produced by node C.

Despite the wide development of tuple space implementations [5], very few of them
offer support for distribution. While some systems use replication to guarantee data
availability [16] or to be resilient to Byzantine faults [4], no existing system handle
link or node faults to guarantee availability of data via erasure-coding. The extensions
presented in Section 6 fill this gap.

4 Block Placement Strategies

In this section we describe several heuristics for block placement. Data is stored in
the nodes of a graph representing a distributed storage system adding redundancy via
standard [14;10] Reed-Solomon code. The aim of the code is to map 10-blocks-inputs
into 14-blocks-codewords in such a way that any 10 encoded blocks are sufficient to
recover the original 10. In other words, this linear code can withstand loss of any 4
blocks of a codeword. Then the code provides the same level of fault-tolerance as 5
times replication while entailing a storage overhead of 40% only.

In this configuration, from a fault-tolerance point of view, it is optimal to place the
14 blocks of a codeword on units failing independently, such as geographically remote
nodes. In reality, nodes hosted in the same data center have a higher likelihood to fail
or being unreachable at the same time. Indeed there are several threats that can lead a
data center to a power outage. We can mention cyber attacks, UPS system failures, air
conditioner failures or human errors [11].

0
40
80

rand
ca10

0
40
80

rr10
da3

0
40
80

no

de
s

dar3
da4

0
40
80

da5
deg

0
40
80

0 20 40 60 80 100
blocks per node

degrand

Fig. 2: Left: random graph used in this experiment. Center and right: blocks distribution
induced by the placement strategies under study.

0
60

120
rand
ca10

0
60

120
rr10
da3

0
60

120

no

de
s

dar3
da4

0
60

120
da5
deg

0
60

120

0 20 40 60 80 100 120
blocks per node

degrand

Fig. 3: Left: scale-free graph used in this experiment. Center and right: blocks distribu-
tion induced by the placement strategies under study.

The proposed strategies must consider a trade-off between:
– Latency efficiency: placing blocks apart from each other negatively affects the fetch

latencies;
– Failure resiliency: if related blocks are placed geographically close to each other, a

failure affecting a wide geographical area will affect several blocks at once.
With the aim of understanding experimentally this trade-off, we study 5 different

placement heuristics. They take into account several structural graph properties (e.g.
the clustering degree) with the objective of minimizing the latency for fetching blocks.

Round-robin (rr). The graph is divided into K clusters C1; : : : ;CK using K -means
algorithm [12]. We place the first block in a random node inside cluster C1, the second
block in a random node in cluster C2 and so on. We proceed until all blocks are placed.

Degree proportional (deg). This strategy places more blocks in nodes with higher
degree. Intuitively, it let nodes with higher network capacity serve more blocks, irre-
spectively of their geographical location.

Cluster-aware (ca). This strategy assumes knowledge of the clustering of the net-
work and places blocks in the cluster hosting the emitting node and two neighboring
clusters. Using K -means, we divide the graph in K cluster C1; : : : ;CK . We say that clus-
ter Ci is at distance 1 from cluster C j if there is an edge of the graph with source/target
in Ci and target/source in C j. For each Ci, we compute all clusters being at distance 1
from Ci.

0
60

120
rand
ca10

0
60

120
rr10
da3

0
60

120

no

de
s

dar3
da4

0
60

120
da5
deg

0
60

120

0 20 40 60 80 100 120
blocks per node

degrand

Fig. 4: NREN topology and its blocks distribution.

We say that clusters Ci and C j are at distance d from each other if we must cross
d � 1 clusters to go from Ci to C j and this is the smallest number possible. For each Ci,
we compute all clusters being at distance 2 from Ci.

In our simulations, we statically precompute the distances between clusters. We
select a first cluster C at random for each codeword. Then, we extract at random 8
nodes from C, 4 different ones from a cluster at distance 1 from C, and finally 2 more
from a cluster at distance 2. The chosen nodes receive the 14 blocks of the codeword.
Notice that this heuristic needs at least 3 clusters to work.

Distance-aware (da). This strategy takes into account the distance between the
node emitting the block and the other nodes in the graph. It assumes the knowledge of
the diameter of the graph (d max), and proceeds as follows. First, 3 ranges of node-to-
node distances (3 being a parameter of the algorithm) must be fixed: short (from the
minimum to the 33rd percentile of d max), mid (from the 33rd to the 66th percentile of
d max), and long from the 66th to d max. Then, for each codeword the algorithm picks
a node N at random, and respectively 7 short-range nodes, 4 at mid-range and 2 from
long-range nodes, for a total of 14 target nodes. Finally it places the 14 blocks of the
codeword in such nodes. We report results for 3 ranges (da3), for 4 ranges (da4, for
which the percentiles are 25th, 50th, 70th and the number of blocks are 6, 4, 2, 1 for
each range, respectively) and finally for 5 ranges (da5, using the percentiles 20th, 40th,
60th, 80th and the number of blocks are 5, 5, 1, 1, 1 for each range respectively).4

Random-Degree (drnd). This strategy combines a naive random strategy with deg.
Each strategy contributes for the placement of half of the blocks.

4 The number of blocks assigned to each class of range nodes (da3, da4, da5) has been experi-
mentally proved to work better in practice.

5 Simulation results

This section presents the results of our simulations with the aim of evaluating how the
different placement strategies perform with respect to fetch-latency and data loss.

Load Balancing. We begin by studying how the strategies spread blocks on 4 dif-
ferent graph topologies. First, we consider a random graph of 1000 nodes, as depicted
in Figure 2 on the left, where we highlight the 10 clusters computed by K -means us-
ing the Euclidean distance between nodes. The distribution of blocks among nodes is
presented in Figure 2 (right). As expected, the rnd strategy produces a Gaussian distri-
bution, while the other approaches tend to flatten and/or shift the bell.

Figure 3 shows topology and block distribution for a scale-free graph of 1000 nodes
built using the preferential attachment method [2]. This topology closely maps a real
Internet topology, yet is simple to study and analyze. We observe that deg and drnd
produce a long-tail block distribution: several nodes have few blocks (right side of the
figure), while few nodes store plenty of blocks (left side of the figure).

Finally, we consider two real-world topologies. The first is the Full European NREN
network [14]. This graph has 1157 nodes and 1465 edges. When computing 10 clus-
ters, we observe 1170 inter-cluster edges (i.e. source and destination nodes belong to
different clusters). Topology and block distributions are presented in Figure 4. As an
empirical confirmation that scale-free graphs are well-suited for representing Internet
topologies, we underline the similarity between the two block distributions.

The second real-world topology, depicted in Figure 5, is the Cogent network [14]. It
is smaller than the NREN topology (197 nodes, 245 edges) nevertheless it extends across
Europe and US. This topology presents trans-oceanic links, with 13 edges to connect
nodes across the Europe and North America. Different ranges in the block distribution
with respect to other graphs are due to the much smaller number of nodes (while we
distribute the same amount of data blocks).

Overall, block distributions generated by the da and rr strategies tend to be bell-
shaped, while dar and deg entail left-sided pick and long tail corresponding to few
blocks in many nodes and few nodes hosting many blocks respectively.

For NREN and Cogent, we know the geographical coordinates of the nodes. To take
into account of the curvature of the Earth and place more precisely the centroids of the
clusters, we use the Haversine distance [17] as K -means distance function.

We fix the number of cluster K = 10 in our simulations except for Cogent topology
which is split in K = 2 clusters corresponding to USA and Europe. For the same reason,
results of ca are not available for Cogent, since the heuristic requires at least 3 clusters.

Fetching latency. We continue by evaluating how the proposed strategies differ
in terms of block recovery latency, as observed by the clients wishing to reconstruct
matching tuples. We assume that the fetch-latency is proportional to the distance be-
tween nodes. Hence, we measure the length of the minimum paths between the node
hosting the target block and the client.

We observe that a node storing a lot of blocks we necessarily need to fetch only few
ones to reconstruct tuples. Hence, for each topology and each placement heuristic, we
distinguish 3 types of clients based on the number of blocks they store. The lucky and
the unlucky node stores the greatest and the smallest amount of blocks respectively.

0
5

10
rand
rr10

0
5

10
da3

no

de
s

dar3

0
5

10
da4
da5

0
5

10
deg

100 200 300 400
blocks per node

degrand

Fig. 5: Cogent topology and its blocks distribution.

0

50

100

150

200

250

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

131.46%

105.60%

74.78%

138.42%

76.25%80.31%77.43%81.63%

baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

Max 75th 50th 25th Min

(a) Random, Euclidean distance

 0

 5000

 10000

 15000

 20000

 25000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

136.29%
100.80%

55.18%

197.60%

53.90%53.21%

84.98%90.50%baseline

(b) NREN, Haversine distance

0

200

400

600

800

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

138.40%
146.26%

57.72%

118.23%

50.72%

146.82%

49.53%

83.03%

baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

(c) Scale-free, Euclidean distance

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100% 104.06%

134.83%115.61%
144.72%

113.16%

54.18%
88.31%

baseline

N
ot

 A
va

ila
bl

e

(d) Cogent, Haversine distance

Fig. 6: Distance for fetching blocks (lucky node).

We use a representation based on stacked percentiles throughout the reminder of
this section. The white bar at the bottom represents the minimum value, the pale gray
on top the maximal value. Intermediate shades of gray represent the 25th, 50th –the
median– and 75th percentiles. We compare the results against a baseline rnd strategy
that randomly places blocks across the graph. Figure 6 and 7 presents the case of the
lucky and unlucky node respectively.

These results validate the intuition that the number of blocks the client is storing
greatly affects the observed fetch-latency. For instance, da3 performs better than other
heuristics in 3 out of 4 topologies when the client is lucky. However, this is not the case
for the unlucky case, where deg and rr perform better instead. These observations sug-
gest that no strategy wins in all possible topologies, and that deployers need to carefully
consider the different trade-offs for their applications and workloads.

Fetching latency under faults. Next, we perform a set of experiments that faults
into the graph. For each graph, we select the most populated among the 10 clusters and
we crash 1% of its nodes. This setting simulates a catastrophic event occurring to nodes
geographically close to each other. Once the faults are injected, we use the lucky nodes
(Figure 8) and unlucky nodes (Figure 9) to try to reconstruct all data stored.

 0

 50

 100

 150

 200

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

78.58%82.78%

114.85%

84.27%

121.08%

97.50%102.42%

122.58%baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

(a) Random, Euclidean distance

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100% 96.99%
102.73%

127.29%115.67%120.08%

151.37%

94.59%
85.78%

baseline

(b) NREN, Haversine distance

 0
 100
 200
 300
 400
 500
 600
 700
 800

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%
66.10%

75.86%
94.61%

87.82%
100.77%

102.01%
100.17%101.39%baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

Max 75th 50th 25th Min

(c) Scale-free, Euclidean distance

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100% 105.98%98.53%
84.20% 84.33% 95.42%

95.50%

155.10%
baseline

N
ot

 A
va

ila
bl

e

(d) Cogent, Haversine distance

Fig. 7: Distance for fetching blocks (unlucky node).

 0

 50

 100

 150

 200

 250

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

131.53%
115.21%

112.01%

151.51%

89.68%

120.42%
100.80%

139.99%
baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

(a) Random, Euclidean distance

 0

 5000

 10000

 15000

 20000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

85.18%
87.93%

77.46%
92.45%

72.33%

137.94%

89.24%
77.99%

baseline

Max 75th 50th 25th Min

(b) NREN, Haversine distance

 0
 100
 200
 300
 400
 500
 600
 700

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

174.73%
190.70%

104.24%

132.90%
146.78%

144.31%

63.31%

113.34%baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

(c) Scale-free, Euclidean distance

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100% 96.57%
70.77%

120.26%

76.55%
103.89%

86.20%
88.63%

baseline

N
ot

 A
va

ila
bl

e

(d) Cogent, Haversine distance

Fig. 8: 1% crashes in one cluster, lucky node.

During these simulations, we did not observe any data loss. Hence, the heuristics
are spreading blocks sufficiently apart from each other to tolerate crashes within the
same cluster.

However, when injecting faults the fetch-latency highly depends on the particular
failing nodes. In the case of the Cogent topology, the deg strategy greatly improves
the results produced by the rnd placement, while on the scale-free graph performance
degrades for the unlucky client. The da3 strategy outperforms the other heuristics in the
NREN topology. More in general, distance-aware heuristics seem to be well-suited for
the random graph.

Statistical analysis. Finally, to evaluate the statistical significance of the differences
recorded by the simulations between the various heuristics, we perform two sets of
t-tests [12] on fault-free graphs. First, we build the dataset with one entry for every
node. In this entry we compute the cumulative distance, that is, the sum of the length

 0

 50

 100

 150

 200

 250

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

72.35%
63.67%

68.95%66.96%

98.72%

79.91%84.93%
99.37%

baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

(a) Random, Euclidean distance

 0

 5000

 10000

 15000

 20000

 25000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%
99.71%103.51%

59.62%

201.64%

59.00%58.56%

111.84%
120.48%

baseline

(b) NREN, Haversine distance

 0
 100
 200
 300
 400
 500
 600
 700
 800

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

65.37%

134.78%

133.18%

85.41%

151.98%

115.32%
107.80%

117.75%
baseline

di
st

an
ce

 to

 r
ec

ov
er

 1
 b

lo
ck

(c) Scale-free, Euclidean distance

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

rnd
ca rr da3

dar3
da4

da5
deg

drnd

100%

N
ot

 A
va

ila
bl

e

96.57%
70.77%

120.26%
76.55%103.89%

86.20%
88.63%baseline

Max 75th 50th 25th Min

(d) Cogent, Haversine distance

Fig. 9: 1% crashes in one cluster, unlucky node.

of all minimum paths covered to retrieve all data in the system from that particular
client. We fix a topology and compare different heuristics against each other. We find
the following p-values:

scale-free graph random graph NREN Cogent
t.test(rnd,deg) 0:2486 0:03055 0:00761 0:7828
t.test(rnd,da3) 0:4805 0:3242 0:3774 0:2203

These p-values answer the question: ”what is the probability that the means of the cu-
mulative distances covered by the two heuristics are equal?”. For every graph we found
an heuristic between da3 and deg such that the probability is less the 25%. We con-
sider this a low evidence that the two means are the same but still such a value does not
provide a decisive response.

For this reason, instead of using cumulative distances, we create a dataset of the
distances covered to fetch every block by each node in the graph (e.g. in the case of the
scale-free graph the dataset has 1000 entries times the number of blocks fetched, i.e.
3276000 entries). We run t-tests on random 1000-entries-samples from this dataset to
compare different heuristics against each other. We find the following p-values:

scale-free graph random graph NREN Cogent
t.test(rnd,deg) 0:1661 6 � 10�6 0:0004 0:6475
t.test(rnd,da3) 0:4215 0:0406 0:2936 0:1042

So for every topology we can find a heuristic between deg and da3 with support less
than 16% for the hypothesis that the distance covered is the same as the one covered by
rand. We take into account the modeling and statistical results to implement deg and
da3 into in a real tuple space and evaluate how they perform in a practical setting.

6 Implementation

We implement and deploy three of the described blocks placement strategies (da3, deg
and rnd) atop SIMPLETS,5 a tuple-space implemented in Python (v3.4.0). The original

5 https://github.com/jmbjorndalen/SimpleTS

Local TS

a

c

b

d

Local TS

Local TS

Local TS

Local TS

a

c

b

d

Local TS

Local TS

Local TS

Read +ECWrite + EC

Fig. 10: Distributed tuple space with erasure code: write ops. spread blocks apart
driven by a specific strategy; read ops. fetch blocks from remote nodes.

implementation of SIMPLETS did not support remote tuple space nodes. Therefore, we
first extended it to support a distributed scenario, leveraging PYRO (v4.0),6 a remoting
library for Python. Overall, our modifications to the SIMPLETS source code consist of
only 250 additional lines of code.

To add erasure coding and block placement techniques, we extend the tuple space
APIs with additional operations to properly handle writing, reading, and deletion of
encoded tuples. For example, using a [14;10] Reed-Solomon code, the out(t) operation
that emits the tuple t in the tuple space, becomes out ec(t). This version encodes the
tuple, splits it into 14 blocks and, according to the chosen strategy, distributes these
blocks among the other nodes. To this end, from the original tuple a list of tuples of the
following form is created: <tupleUID, blocksAndIndicesList, nodeList> where
tupleUID is a unique identifier of the original tuple t, blocksAndIndicesList is a
list of pairs (bi; i) indicating that bi is the i-th block of the codeword and nodeList is a
list of nodes containing the remaining blocks. Figure 10 shows the extended version of
SIMPLETS with erasure coding abilities.

In this configuration, reading a tuple only require to fetch 10 out of the 14 existing
blocks. The tuple space programming paradigm requires the reading operations to op-
erate via pattern-matching [9]. In the case of encoded tuples, the tuple space needs to
decode the tuple. Therefore, this operation sequentially reads a tuple with blocks from
the tuple space. Specifically, it leverages the nodeList index to discover and retrieve
the missing blocks from other nodes in order to reconstruct the tuple. Then it checks
whether the reconstructed tuples matches the template. Clearly, in the worst case to
find a matching tuple the system has to decode the entire tuple space. We assume the
existence of an up-to-date indexing service that serves the purpose of speeding up the
process of discovering the location of the required blocks. In our evaluation, we assume
to know the location of the nodes storing the blocks required to decode the tuple. It is
out of the scope of this work how to efficiently maintain this index.

We implement both da3 and deg strategies on our tuple space and test them on a
scale-free network made of 100 nodes. We emulate a large-scale network deployment
using Docker (v1.13.1). We map each SIMPLETS node (with its local tuple space) to

6 https://pythonhosted.org/Pyro4/

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.04 0.08 0.12 0.16 0.2

C
D

F
 (

%
)

Time (seconds)

Reading and Decoding

1B
64KB

128KB
256KB
512KB

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7

C
D

F
 (

%
)

Time (seconds)

Reading and Decoding

1B
64KB

128KB
256KB
512KB

Fig. 11: Distribution (CDF) of tuple’s reading performance for increasing tuple size.
Left: without erasure-coding. Right: with erasure-coding.

a standalone container. The latency between two nodes, say i and j, is proportional to
their minimum distance on the graph. Latency (by mean of a sleep system call) is
then interposed by the proxy interface of the Pyro service exposed by each tuple space
process. In practice, when node i contacts node j to read (or write) a tuple, node j sleeps
latencyi; j milliseconds before replying. An alternative method is be to add latency at the
OS level, e.g. by implementing a software router.7

7 Prototype evaluation

This section presents our evaluation with the extended SIMPLETS system. Due to the
lack of hardware resources, we are limited to a cluster of 100 node mimicking a scale-
free network. Each node is executed by a SIMPLETS Docker container. In this evalua-
tion, only communication delays among nodes are emulated.

Erasure-coding overhead. To evaluate the overhead of erasure coding, we execute
an initial set of microbenchmarks for reading times. In this experiment, we vary the
size of data stored in each tuple, from 1 byte to 512KB. At the beginning, we randomly
distribute 1000 tuples across 100 nodes. Then, 10 random nodes read all the 1000 tu-
ples. We measure the time for reading each tuple, and we report them as Cumulative
Distribution Function (CDF). As shown in Figure 11 (left), the size of the tuple only
modestly affects the reading time from the tuple space without encoding.

When erasure coding is enabled, Figure 11 (right), the reading time is more sensitive
to the tuple size: it grows from milliseconds for the tuples containing 1 byte to several
seconds for the size of 512KB. For bigger tuples, the time for encoding and decoding
is significantly higher. We believe that a highly optimized erasure-code library, such as
Intel ISA-L [1], would greatly reduce the overhead and make it more practical.

Experiments with different strategies. This experiment evaluates the performances
of the tuple space using different block placement strategies. At the beginning, each of
the 100 nodes writes 10 tuples. The tuples are encoded and split into blocks. Those are

7 We report on our failed attempt in using Linux tc’s traffic shaping (using delay.sh
https://gist.github.com/arr2036/6598137) to emulate network latencies. In particular, the cur-
rent Docker networking layer does not cope well with this approach, where all nodes in a
given network class (such as all the Docker containers running in the same host) apply the
same delay, preventing the emulation of more complex graph topologies.

 0
 0.5

 1
 1.5

 2
 2.5

 3

0 25 50 75 100

C
D

F
 (

%
)

Time (seconds)

Write

rnd deg da3

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0 25 50 75 100

C
D

F
 (

%
)

Time (seconds)

Read

da3 deg rnd

Fig. 12: Writing and the reading times for different strategies of blocks placement

dispatched to remote nodes according to the given strategy. Finally, a node is chosen to
fetch and reads the blocks of its own tuples.

Figure 12 presents our results for write and read operations.8 The plot shows the
CDF of the timings to write/read the tuples into/from the tuple space. The da3 strategy
achieves the best performances for writes, because the writing time depends on the
number of nodes used to spread each tuple’s blocks. Random placement offers the worst
performance as it involves a high number of nodes. The reading time depends on the
distribution of the blocks among the nodes. The distributions obtained reflect the ones
shown in Figure 3 and we do not report them here due to lack of space. For the distance-
aware and random strategies, distributions are more uniform and the times are low. For
the degree-aware strategy, nodes with the higher degree have considerably more blocks
and the reading time vary significantly. As consequence, the reading time depends also
on the order in which tuples are written. In the case of SIMPLETS, the tuple space is
implemented as a list, hence the reading time will be greater for the tuples which were
written toward the end.

8 Conclusion

The problem of data block placement in a wide-area network setting is of paramount
importance. Several distributed applications rely on a random strategy. In this paper
we considered a scenario where distributed applications are implemented via the tuple
space paradigm. These systems need to efficiently cope with network faults to avoid
losing tuples, while at the same time being storage efficient and allow fast fetching
time. We extended an open-source Python-based tuple-space implementation with dis-
tribution capabilities and erasure-coding features. We presented a study of several block
placement strategies to dispatch blocks over the nodes of a distributed tuple space. We
considered synthetic and real-world graph topologies, up to thousands of nodes. Our
modeling, statistical analysis and system performance results, also based the evaluation
of our full working prototype, shed some light on the trade-offs that one need to accept
when deploying such systems. Our results reinforce the believe that it is important to
gather structural informations about the underlying network topology to wisely choose
the appropriate block placement heuristic.

8 We omit the results for withdrawing operations. They show similar trends to read results plus
a small overhead due to the fetching of all the 14 blocks.

In this work we considered the distributed tuple space as practical use-case. We
stress that our strategies are general purpose and can be deployed in other distributed
systems such as distributed key-value stores.

Acknowledgments
The authors are grateful to Hugues Mercier and Pascal Felber for invaluable discussions during
the preliminary phases of this work. We are grateful to Rocco De Nicola for fruitful discussions
around tuple spaces. This research was partially supported by the European Union’s Horizon
2020 - The EU Framework Programme for Research and Innovation 2014-2020, under grant
agreement No. 653884.

References
1. Intel’s ISA-L. https://github.com/01org/isa-l.
2. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.
3. A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga. Depspace: a byzantine fault-

tolerant coordination service. In ACM SIGOPS Operating Systems Review, volume 42, pages
163–176. ACM, 2008.

4. A. N. Bessani, M. Correia, J. da Silva Fraga, and L. C. Lung. An efficient byzantine-resilient
tuple space. IEEE Trans. Computers, 58(8):1080–1094, 2009.

5. V. Buravlev, R. De Nicola, and C. A. Mezzina. Tuple spaces implementations and their
efficiency. In COORDINATION 2016, volume 9686 of LNCS, pages 51–66. Springer, 2016.

6. N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course. MIT Press,
Cambridge, MA, USA, 1990.

7. M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and J. McPherson. CoHadoop:
flexible data placement and its exploitation in Hadoop. Proceedings of the VLDB Endow-
ment, 4(9):575–585, 2011.

8. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Comput. Surv., 35(2):114–131, June 2003.

9. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(1):80–112, 1985.

10. D. Gelernter and N. Carriero. Coordination languages and their significance. Commun.
ACM, 35(2):97–107, Feb. 1992.

11. P. Institute. 2013 cost of data center outages. 2013.
12. G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning,

volume 6. Springer, 2013.
13. H. Jin, X. Yang, X.-H. Sun, and I. Raicu. Adapt: Availability-aware mapreduce data place-

ment for non-dedicated distributed computing. In Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on, pages 516–525. IEEE, 2012.

14. S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topology zoo.
Selected Areas in Communications, IEEE Journal on, 29(9):1765 –1775, october 2011.

15. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. Elsevier, 1977.
16. L. I. Patterson, R. S. Turner, and R. M. Hyatt. Construction of a fault-tolerant distributed

tuple-space. In SAC’93, pages 279–285, New York, NY, USA, 1993. ACM.
17. C. C. Robusto. The Cosine-Haversine Formula. The American Mathematical Monthly,

64(1):38–40, 1957.
18. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System. In

Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on, pages 1–10.
IEEE, 2010.

19. T. White. Hadoop: The definitive guide. “O’Reilly Media, Inc.”, 2012.

