Skip to Main content Skip to Navigation
Conference papers

An Optimized Resilient Advance Bandwidth Scheduling for Media Delivery Services

Abstract : In IP-based media delivery services, we often deal with predictable network load and traffic, making it beneficial to use advance reservations even when network failure occurs. In such a network, to offer reliable reservations, fault-tolerance related features should be incorporated in the advance reservation system. In this paper, we propose an optimized protection mechanism in which backup paths are selected in advance to protect the transfers when any failure happens in the network. Using a shared backup path protection, the proposed approach minimizes the backup capacity of the requests while guaranteeing 100% single link failure recovery. We have evaluated the quality and complexity of our proposed solution and the impact of different percentages of backup demands and timeslot sizes have been investigated in depth. The presented approach has been compared to our previously-designed algorithm as a baseline. Our simulation results reveal a noticeable improvement in request acceptance rate, up to 9.2%. Moreover, with fine-grained timeslot sizes and under limited network capacity, the time complexity of the proposed solution is up to 14% lower.
Complete list of metadata

Cited literature [21 references]  Display  Hide  Download
Contributor : Hal Ifip Connect in order to contact the contributor
Submitted on : Friday, June 1, 2018 - 4:00:44 PM
Last modification on : Wednesday, November 3, 2021 - 2:57:00 PM
Long-term archiving on: : Sunday, September 2, 2018 - 4:26:04 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Maryam Barshan, Hendrik Moens, Bruno Volckaert, Filip De Turck. An Optimized Resilient Advance Bandwidth Scheduling for Media Delivery Services. 11th IFIP International Conference on Autonomous Infrastructure, Management and Security (AIMS), Jul 2017, Zurich, Switzerland. pp.79-93, ⟨10.1007/978-3-319-60774-0_6⟩. ⟨hal-01806052⟩



Record views


Files downloads