
HAL Id: hal-01806059
https://inria.hal.science/hal-01806059

Submitted on 1 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Achieving Reproducible Network Environments with
INSALATA

Nadine Herold, Matthias Wachs, Marko Dorfhuber, Christoph Rudolf, Stefan
Liebald, Georg Carle

To cite this version:
Nadine Herold, Matthias Wachs, Marko Dorfhuber, Christoph Rudolf, Stefan Liebald, et al.. Achieving
Reproducible Network Environments with INSALATA. 11th IFIP International Conference on Au-
tonomous Infrastructure, Management and Security (AIMS), Jul 2017, Zurich, Switzerland. pp.30-44,
�10.1007/978-3-319-60774-0_3�. �hal-01806059�

https://inria.hal.science/hal-01806059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Achieving reproducible network environments
with INSALATA

Nadine Herold1, Matthias Wachs1, Marko Dorfhuber2, Christoph Rudolf2,
Stefan Liebald1, and Georg Carle1

Technical University of Munich (TUM), Department of Informatics, Chair of Network
Architectures and Services

1lastname@net.in.tum.de,2firstname.lastname@tum.de

Abstract. Analyzing network environments for security flaws and as-
sessing new service and infrastructure configurations in general are dan-
gerous and error-prone when done in operational networks. Therefore,
cloning such networks into a dedicated test environment is beneficial for
comprehensive testing and analysis without impacting the operational
network. To automate this reproduction of a network environment in a
physical or virtualized testbed, several key features are required: (a) a
suitable network model to describe network environments, (b) an au-
tomated acquisition process to instantiate this model for the respective
network environment, and (c) an automated setup process to deploy the
instance to the testbed.
With this work, we present INSALATA, an automated and extensible
framework to reproduce physical or virtualized network environments
in network testbeds. INSALATA employs a modular approach for data
acquisition and deployment, resolves interdependencies in the setup pro-
cess, and supports just-in-time reproduction of network environments.
INSALATA is open source and available on Github. To highlight its ap-
plicability, we present a real world case study utilizing INSALATA.

Keywords: Infrastructure Information Collection, Automated Testbed
Setup and Configuration, Testbed Management

1 Introduction

The increasing number of attack vectors and the growing complexity of attacks
on computer networks force operators to continuously assess and improve their
networks, services, and configurations. Analyzing, testing, and deploying new
security features and configuration improvements is time-consuming, challeng-
ing, and error-prone. The same holds for general software upgrades or network
infrastructure changes. Performing this on an operational network is often not
suitable, as service continuity has to be ensured and outages cannot be tolerated.

Therefore, reproducing a network environment into a self-contained test en-
vironment is beneficial as the operational network is not influenced. Testing and
analyzing different options to improve the network and its security can be evalu-
ated and tested sufficiently before deployment. With large and complex network



2 INSALATA: Herold et al.

environments, reproducing such network environments cannot be done manually
as information about the environment and its elements may be unknown, incom-
plete, or not available in a formal description. Hence, an automated process to
reproduce network environments in a physical or virtualized testbed is required.

In this work, we present INSALATA, the IT NetworkS AnaLysis And de-
ploymenT Application. INSALATA enables network operators and researchers
to automate reproduction of arbitrary network environments in physical or vir-
tualized testbeds. To represent network environments, we provide a network
model comprising layer-2 network segments, IP networks, connectivity informa-
tion (routing and firewalling), network nodes (routers, hosts), network services
(DNS, DHCP), and host information (network interfaces, memory, disks, oper-
ating system). INSALATA can analyze network environments to obtain a formal
description of the network to track the state continuously or in discrete intervals.
Here, INSALATA uses information fusing to provide a comprehensive view on
the network by aggregating information from multiple collector modules. Using
descriptions decouples analysis and deployment and enables re-using, archiving,
and distributing these descriptions. INSALATA can instantiate descriptions on
physical or virtualized testbeds employing a PDDL planner to structure the
setup process and resolve inter-dependencies between setup steps. To minimize
setup steps and reuse existing testbed setups, we support incremental setups by
determining the delta between current and target testbed state.

The key contributions of our work are (a) INSALATA, a fully automated,
modular, and extensible framework to reproduce network environments on test-
beds, (b) the open source implementation of INSALATA available on GitHub,
and (c) a case study showing INSALATA’s applicability to real world scenarios
using exemplary module implementations.

The remainder of this paper is structured as follows: First, we describe our
goals and requirements for INSALATA in Section 2. Afterwards, we analyze if
related work can fulfill these in Section 3. In Section 4, we present INSALATA’s
design and introduce its components. Next, we present the main components
of INSALATA in detail, in particular the underlying information model in Sec-
tion 5, the Collector Component in Section 6, and the Deployment Component
in Section 7. In Section 8, we summarize important implementation details. In
Section 9, we present a case study to show the applicability of our proposed
system. Finally, we give a conclusion and present future work in Section 10.

2 Goals and Requirements

The overall goal is to reproduce arbitrary network environments into physical
or virtualized testbeds. Therefore, we need (a) a suitable information model re-
flecting required information, (b) an automated information acquisition process,
and (c) an automated deployment process.

(a) Information Model: The information model abstracts from the network en-
vironment. The goal is to reflect network environments up to application layer



Achieving reproducible network environments with INSALATA 3

of the TCP/IP reference model. The information model has to be extensible
to allow to add use case specific services and additional information elements.
Therefore, we require the following information to be present: (a) basic network
nodes, like hosts and routers, (b) networks on layer 2 and 3, including appropriate
addressing schemes, (c) connectivity information like routing and firewalling, (d)
basic network services like DNS and DHCP, and (e) host information, including
network interfaces, disks, memory, CPUs, or operating system.

(b) Information Acquisition: The goal is to provide information acquisition that
supports different types of information collection techniques, supports continu-
ous monitoring of the network environment, and is fully automated. We iden-
tified that the following information collection techniques, differing in terms of
intrusiveness and quality of information they provide, have to be supported:

Manually specified information is not intrusive, but rarely up-to-date. In-
cluding such information is required if other techniques are not applicable.

Passive scanning has no direct impact on networks, but collected information
is limited and access to all network segments is required.

Active scanning creates load in a network and on components, but provides
more detailed information about entities and services in the network.

Network management protocols need to be available on investigated nodes,
but reduce system’s load and information requests are standardized.

Direct access to components, e.g. with SSH, delivers rich information, but
requires appropriate access, to invoke applications, and interpret the output.

Agent-based information collection collects information just-in-time, but
agents need to be deployed and run on the components.

(c) Deployment Process: The deployment process has to be incremental, so that
the delta between the current and the target state is computed during setup and
only required configuration steps are executed. Additionally, the deployment
process has to be modular and extensible in order to cope with use case specific
requirements. Therefore, the setup process has to be divided into small, self-
contained steps. To be able to use the deployment process on different testbed
architectures, the process itself needs to be independent from the underlying
architecture as much as possible.

3 Related Work

To the best of our knowledge, no application to reproduce network environ-
ments exists. Therefore, we examine the two main components of INSALATA,
namely information acquisition and testbed setup for deployment, separately.
Next, we investigate network description languages as we need a suitable net-
work model for INSALATA. Finally, we discuss network management protocols
and frameworks to investigate appropriate implementation mechanisms to de-
ploy the description of the network environment on the testbed.



4 INSALATA: Herold et al.

Data Acquisition Applications are needed to obtain information about the net-
work environment. Here, continuous monitoring is required and information from
different sources needs to be fused. Additionally, tracking changes is a require-
ment. IO-Framework [6, 19] does not support continuous monitoring and only
supports intrusive collection methods. The common Network Information Ser-
vice (cNIS) [1] utilizes static information and higher level services (SSH or
SNMP) but does not include less invasive information collection techniques.
MonALISA [11, 7] and PerfSONAR [29] are not capable of continuously mon-
itoring the network and detect changes. OpenVAS [23] is used to identify vul-
nerabilities within an infrastructure but has limited scanning capabilities. Single
purpose tools like Nmap [20], Traceroute [2], or xprobe2 [35] can be used to col-
lect single aspects of the network environment but do not provide a holistic view.
Dedicated network management protocols, like SNMP [8, 21] or Netconf [27] can
only be used to retrieve dedicated information from single network components,
but do also not provide a complete view on the network.

Testbed Management Frameworks are used to orchestrate and control testbeds.
All presented frameworks do not provide incremental setups but rebuild the
designated network from scratch leading to higher effort within the setup pro-
cess and manually configured changes get lost. Additionally, testbed orchestra-
tion and experiment execution are often tightly coupled. vBET [18] and Laas-
NetExp [24] are both closed source, preventing to extend those frameworks.
VNEXT [25] and NEPTUNE [5] do not provide the automated setup of basic
network services, like DNS or DHCP. Emulab [34] or DETER [4] tightly couple
the infrastructure setup and the experiment execution. This requires to rebuild
the network after each experiment.

Network Description Languages and Ontologies can be used as information
model. The related work within this field lacks in providing the information
elements needed for a proper mirroring of network environments, especially in
terms of reflecting the connectivity due to routing and the usage of firewalls.
IF-MAP [30, 31, 3] is not capable of reflecting interfaces or routing information.
The target-centric ontology for intrusion detection [32] does not provide a suffi-
cient addressing scheme for elements nor reflect routing or firewalls. The Network
Markup Language (NML) [15, 14] provides a schema for exchanging network de-
scriptions on a generic level, but does not provide concepts like network routing.
The Infrastructure and Network Description Language (INDL) [28, 17, 13] ex-
tends NML, but is not capable of reflecting routes or firewall rules. Tcl-based
format in Emulab and ns-2 [34] is not capable of modeling networks explicitly
resulting in verbose definitions for large networks.

Network Management Protocols and Frameworks can be used to setup and con-
figure the descriptions in testbeds. To do so, the virtualized testbed has to be
setup, e.g. router and hosts as virtual machines, and those components need
to be configured appropriately afterwards, e.g. using adequate routing tables.
Dedicated network management protocols, like SNMP [8, 21] or Netconf [27]



Achieving reproducible network environments with INSALATA 5

can be used to configure components and request dedicated information in a
standardized way. Both protocols do not provide built-in mechanisms to man-
age larger infrastructures as a whole. Ansible [9] is a push-based framework to
configure larger infrastructures using so-called playbooks. Those playbooks need
to be written or adapted for each configuration. Ansible can not be used directly
for our approach, but is suitable as an important building block. Puppet [26]
is a pull-based framework for infrastructure configurations. As the testbed is
reconfigured in irregular intervals, a pull-based mechanism is not suitable.

4 Approach and System Design

INSALATA consists of the Collector and the Deployment Component as its two
main components:

The Collector Component is responsible for collecting and fusing informa-
tion of the network environment and the current state of the testbed into a
descriptions (see Section 6).

The Deployment Component manages configuration changes and the auto-
mated setup process on the testbed (see Section 7).

Both components utilize the same information model to structure the infor-
mation about the network environment (see Section 5) and are managed and
orchestrated by a central controller, the Management Unit. The system archi-
tecture of INSALATA showing these basic components and their interaction is
depicted in Figure 1.

Management Unit

Pre-
processor

upload

User

virtual

physical

Collector Deployment

Database

loadstore

scan deploy/change

Fig. 1. System Overview of INSALATA Showing Basic Components



6 INSALATA: Herold et al.

The Collector acquires information about the network environment and is
used to generate a description for the testbed. It maintains the current state of
the monitored network. Here, the collection process can be done continuously
whereas configuration changes can be tracked and stored with a timestamp in a
database. This approach allows to rebuild a network at each point in time.

The Deployment Component utilizes a description that is either obtained by
the Collector or provided by the user. Based on this, the Deployment Component
configures the testbed to reproduce a network environment. To ease writing
descriptions, a Preprocessor is utilized, replacing missing but calculable values
in the description and checking the it for its validity.

5 Description of the Information Model

To be able to reflect a network environment in a testbed, a formal description of
this network is required. This description needs to contain information elements
discussed in Section 2. Each information element needs to be leviable from the
network environment in an automated manner and has a unique identifier. The
proposed information model is shown in Figure 2. An information element is
represented as box, the identifier of each element is underlined and additional
attributes describing the information element are listed. For FirewalRules and
Routes a combination of attributes is used as identifier. Relations between infor-
mation elements are denoted as arrows in between and additionally denote their
cardinality.

The main information element is the Network Component representing a node
in the network environment, e.g. hosts, routers or switches, and are further spec-
ified by the Template attribute. A Network Component is equipped with certain
Disks and Interfaces. Interfaces are needed to interconnect Network Components
in different kinds of networks, e.g. Layer 2 Networks or Layer 3 Networks.

Depending on its functionality, a Network Component can maintain Routes
or Firewall Rules. Those express the connectivity between Network Components.
The latter can be represented as raw dumps (Firewall Raw) or in a simplified
format (Firewall Rule) to ease transformation between different firewall applica-
tions as proposed in [10]. As a simplification is not free of information loss, the
raw information is stored additionally.

To support large-scale test environments consisting of multiple servers, a
Network Element is associated with a Location specifying the testbed server
the Network Component is emulated on. In case of a description reflecting the
network environment, the Location is set to physical.

Another important concept of the information model is the Service element.
This information element is used to reflect basic network services, like DNS or
DHCP. A Service can be further specified by adding a Product and a Version
to allow a high accuracy. Additionally needed services can be added to the
information model using inheritance, allowing use case specific applications.



Achieving reproducible network environments with INSALATA 7

1
use
0..*

1..*

in1

1..*

contains1..*

1

use

0..*

1

use

0..*

1

has

0..*

0..*

in 1

0..*1

0..*

connected to 0..1

0..*0..1 0..*1

0..*hop 1

0..*

start 1

0..*

end 1

0..*

destNet1

0..*

srcNet1

0..*

interface 1

0..*

hop1

0..*

interface1

0..* 1

NetworkComponent

id : String

cpus : Integer
cpuSpeed : Integer
memoryMin : Integer
memoryMax : Integer
powerState : String
template : String

Disk

id : String

size : Integer

Interface

mac: String

rate : Integer
mtu : Integer

Layer2Network

id : String

Location

id : String

Layer3Address

address : String

netmask : String
gateway : String
static : Boolean

Route

genmask : String
metric : Integer

FirewallRule

chain : String
action : String
protocol : String
srcPorts : list
destPorts : list

Layer3Network

address : String

netmask : String

FirewallRaw

firewall : String

data : String

Service

port : Integer

type : String
protocol : String
product : String
version : String

DnsService

domain : String

DhcpService

lease : Integer

connected to configured on running on

destination

Fig. 2. Information Model of INSALATA

6 Information Collector Component

The Collector Component is capable of managing multiple Environments de-
scribing multiple networks to be monitored. The overview of INSALATA’s in-
formation Collector Component is depicted in Figure 3.

For each Environment, multiple Collector Modules, employing a particular
information collection technique as described in Section 2, can be configured to
collect the required information. A Collector Module obtains information about
at least one information element and possible relations between information ele-
ments. Therefore, modules have to obtain the unique identifier of an information
element. The collected information elements are handed over to the Environment
fusing all obtained information into a comprehensive graph describing the net-
work. Here, we assume that a module delivers no false, but potentially incomplete
information. This modular approach has the advantage that different, specialized
information collection techniques can be combined resulting in a more detailed
and more precise view on the network environment.

To fuse information, the Collector utilizes the identifier of each object and
the type of the information element. Objects with the same identifier and of
the same type are treated as the same object. Each Collector Module passes
discovered objects to the Collector. Attributes and relations are fused together
in case multiple modules report the same objects.



8 INSALATA: Herold et al.

Management Unit

Env1config

Mod1,2Mod1,1 Mod1,3

Net1

Env2 config

Mod2,1 Mod2,2

Net2

Fig. 3. Information Collector Component of INSALATA

Another challenge is to manage existing information elements in the model
becoming obsolete. Therefore, a deletion scheme needs to be implemented within
an Environment. Each information element in an Environment is equipped with
timers for each Collector module. Each time, an information element is delivered
by a module, the module specific timer is updated. If all timers in the list expire,
the information element and its relations are deleted from the Environment. In
addition, each module can actively set its own timer to zero, if it is capable to
determine the non-existence of an element.

To be able to recreate an environment at any (observed) point in time, we
track the network environment’s state over time. Whenever an information el-
ement or relation is modified, i.e., is added, deleted, or updated, we save this
delta as an event to the database. Such events contain the type of change, the
information element and its properties. Within an Environment, only the current
state of the network description is maintained.

7 Infrastructure Deployment Component

The Deployment Component executes the following steps: (a) determine required
configuration steps using the current testbed state and the given description,
(b) determine a correct execution plan how to achieve the given description, and
(c) deploy the changes on the testbed following the computed execution plan.
The overview of the execution flow of INSALATA’s Deployment Component is
depicted in Figure 4.

First, the Deployment Component has to determine what needs to be changed.
Therefore, we need the current state of the testbed in the form a description as
Description D2 that can be determined using the Collector Component. Addi-
tionally, we need the target state in the form a description as Description D1

provided from the Collector or the user. The Deployment Component uses a



Achieving reproducible network environments with INSALATA 9

Pre-
processor

Description
D1

XML

Collector
Description

D2

Change
detec-
tion

Planning

Problem
parser

Problem

PlannerDomain

PlanBuilder

Builder
module

n

Builder
module

1 ... uses

Testbed
builds

scans

Fig. 4. Execution Flow of INSALATA’s Deployment Component

Change Detection Module to detect added, removed, and updated information
elements in the delta between these states.

To determine how to change the testbed, we use automated planning and
scheduling from the domain of artificial intelligence [16]. A planning problem
is described using a dedicated planning language such as the Planning Domain
Definition Language (PDDL). PDDL separates the planning problem into a do-
main description, describing the problem domain, and a problem description, de-
scribing an instance of the problem [12]. A PDDL domain description describes
the objects’ types, predicates (i.e., properties), and actions. Each action has a
definition of objects it is applicable to, preconditions that have to be fulfilled,
and an effect altering the predicates of objects. With INSALATA, we provide
a domain description for our information model and steps as PDDL actions
necessary to setup a testbed. A detailed overview on the steps we defined and
their inter-dependencies can be found in the domain description provided with
the implementation. The PDDL problem description describes all objects, their
type and their initial state. The problem specifies the goal state of all objects by
giving their desired predicates [22] inside a goal section. While the domain file is
static, the problem file depends on the current and target state and is computed
each time a description is deployed on the testbed.

The computed changes, the current testbed state, and the target state are
given to the Problem Parser Module computing a PDDL problem description.
This description is given to the Planner Module, an automated planning and
scheduling solver computing an execution plan containing the correct order of
actions that will bring the testbed from the current into the target state. The
execution plan is passed to the Builder to execute the steps on the designated
testbed. Implementations of these steps are provided by architecture-specific
Builder Modules since the implementation of such steps is different for different
testbed architectures and objects. The Builder uses meta-data associated with
the Builder Modules and the objects to identify the correct implementation.



10 INSALATA: Herold et al.

This allows us to dynamically add new implementations, e.g. for new operating
systems or services, without changing the Deployment Component.

8 Implementation

INSALATA is written in Python 3 and is available in INSALATA’s GitHub
repository1. A detailed code documentation is available on2.

The Management Unit can be controlled using a XML-RPC client commu-
nicating with INSALATA. The presented information model is reflected using
object-oriented Python classes.

Besides the Collector Component itself, we provide the following Collector
Modules: (1) a XEN module using to collect information from environments us-
ing XEN virtualization, (2) an XML module for manually provided information,
(3) a Tcpdump module for passive network scanning using Tcpdump, (4) an Nmap
module for active network scanning using Nmap, (5) an SNMP module to retrieve
information from nodes using SNMP, (6) an SSH module to retrieve information
from nodes via SSH, and (7) a Zabbix module for agent-based information col-
lection with the Zabbix network monitoring system. Some modules have limited
functionality, meaning that not all information possible to collect is implemented,
e.g. the SSH module does not collect firewall rules. New collector modules can
be added to INSALATA to cover the desired scanning environment.

We integrate fast-forward3 as a planner into INSALATA’s Deployment Com-
ponent. The domain file describing the setup process of a testbed we provide, is
given in PDDL. The required problem files are generated for each setup individ-
ually in an automated manner. We provide a framework allowing to add new
Builder Modules in an easy way. Here, we utilize Python annotations to deter-
mine the most suitable Builder Module for a given step within the determined
plan and the configured object. Besides provided Builder Modules to setup the
basic topology on XEN (hosts, routers, layer 2 networks), we utilize Ansible for
additional configurations (routing, firewalling, DNS, and DHCP).

9 Case Study: Chair’s Teaching Infrastructure – iLab

To show INSALATA’s applicability in practical scenarios, we assesed INSALATA
in a a case study. For this case study, we use a setup adapted from the lab
course iLab4 offered by the TUM’s Chair of Network Architectures and Services.
The iLab is a course to teach student’s practical skills in administering network
setups and configurations for different scenarios using real hardware. A typical
setup students have to work with during an iLab course is shown in Figure 5.
This setup consists of two Cisco and a Linux router, and four host residing

1 https://github.com/tumi8/INSALATA
2 https://insalata.readthedocs.io/en/latest/index.html
3 http://www.fast-downward.org/ObtainingAndRunningFastDownward
4 https://ilab.net.in.tum.de



Achieving reproducible network environments with INSALATA 11

in different private networks. In our case study, our goal is to reproduce this
network environment in a network testbed using XEN virtualization.

Cisco-Router 1

Linux-Router

Cisco-Router 2

Switch

PC1 PC2 PC3 PC4

eth0 10.0.1.254/24
eth0 10.0.2.254/24

eth0 10.0.3.254/24

eth0 10.0.1.1/24 eth0 10.0.1.2/24 eth0 10.0.2.1/24 eth0 10.0.3.1/24

eth2 10.0.6.1/24 eth2 10.0.6.2/24

eth1 10.0.4.1/24 eth1 10.0.5.2/24

eth2 10.0.4.1/24 eth1 10.0.5.1/24

Fig. 5. Typical Infrastructure Setup within the iLab Course

We provide the IP addresses of all routers to the INSALATA system as a
starting point using manual input in form of XML files. All routers and hosts
are configured to allow INSALATA to access the systems using SSH and SNMP.

In the first phase, we obtain the required description of the network environ-
ment using our Collector Component. To expand our infrastructure information
using our passive Tcpdump Collector Module, we generate traffic on the involved
hosts. Using the SNMP and SSH Collector Modules, missing interfaces, MAC
addresses, and routing information is obtained from routers and hosts. Using the-
ses Modules, we are able to reflect the network environment shown in Figure 5
as description.

In the second phase, we use our Deployment Component to reproduce the
obtained description into our virtualized testbed using XEN with the xapi tool-
stack. INSALATA computes an execution plan to setup the testbed from scratch
in 0.252 s. The resulting execution plan consists of 92 steps, including setting up
virtual machines and networks, configuring interfaces and deploying routes. Each
step is executed in sequence and no parallelization is done. The total time re-
quired to setup the testbed and configure it is 42 min 32 s. Figure 6 visualizes
the setup and configuration process in regard to its execution time.

The most time-consuming tasks during the setup process are the creation of
new virtual machines, which happens at the beginning. The reason for this is that
here new virtual machines have to be cloned from the respective template, in-
cluding copying hard disk images and required reboot operations. Configuration
steps like creation of virtual networks and interfaces are done nearly instanta-
neously. After the setup of our description, we validated the correctness of our
setup using manual inspection, Ping and Traceroute.



12 INSALATA: Herold et al.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400
1

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Time t in s

S
te
p
n
u
m
b
er

Fig. 6. Time Distribution of Setup Steps in the iLab Case Study

10 Conclusions and Future Work

In this work we present INSALATA, a system capable of reproducing network
environments in network testbeds. INSALATA enables network operators and
researchers to test and analyze new security features and general configuration
changes in a separated test environment before deployment in operational net-
works. To be able to formalize network environments, INSALATA utilizes an
information model particularly crafted for representing network topologies, en-
tities, and services in descriptions. To obtain the required information from net-
work environments, we support a modular Collector Component automatically
assessing networks and fusing information from different Collector Modules. The
Deployment Component provides automated planning and scheduling to instan-
tiate descriptions onto a physical or virtualized testbeds. Within our case study,
we show the applicability of our approach reproducing a real world network
environment with several routers and hosts onto a virtualized testbed.

To further improve INSALATA, we will continue our work in this field and on
INSALATA and highly appreciate feedback, improvements, and extensions from
the community. To extended INSALATA’s capabilities, additional Collector and
Builder Modules can help to obtain additional properties from the network envi-
ronment, such as user information or generic service configurations from hosts.
Existing Collector Modules can be extended to obtain more information using
existing assessment techniques, such as firewall information using SSH. To re-
produce network environments more realistically, Builder Modules to support
Microsoft Windows and additional network services, like mail or ftp are bene-
ficial. One of our main goals is to make the deployment process more efficient
by parallelizing the execution of the setup plan. Since INSALATA only pro-
vides mechanisms to setup and orchestrate a testbed, we aim to integrate our
experiment execution framework GPLMT [33] into the INSALATA system.



Achieving reproducible network environments with INSALATA 13

Acknowledgments

This work has been supported by the German Federal Ministry of Education
and Research (BMBF) under support code 16KIS0538 (DecADe).

References

1. GEANT2 common Network Information Service (cNIS) Schema Specification,
http://www.geant2.net

2. traceroute(8) – Linux man page, linux.die.net/man/8/traceroute

3. Ahlers, V., Heine, F., Hellmann, B., Kleiner, C., Renners, L., Rossow, T., Steuer-
wald, R.: Integrated Visualization of Network Security Metadata from Heteroge-
neous Data Sources. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) Graphical Models
for Security: Second International Workshop (GraMSec). pp. 18–34 (2016)

4. Benzel, T.: The Science of Cyber Security Experimentation: The DETER Project.
In: Proceedings of the 27th Annual Computer Security Applications Conference.
pp. 137–148 (2011)

5. Bifulco, R., Stasi, G.D., Canonico, R.: NEPTUNE for fast and easy deployment of
OMF virtual network testbeds [Poster Abstract] (2010)

6. Birkholz, H., Sieverdingbeck, I., Sohr, K., Bormann, C.: IO: An Interconnected As-
set Ontology in Support of Risk Management Processes. In: Availability, Reliability
and Security (ARES), 7th International Conference on. pp. 534–541 (2012)

7. Carpen-Amarie, A., Cai, J., Costan, A., Antoniu, G., Boug, L.: Bringing Intro-
spection Into the BlobSeer Data-Management System Using the MonALISA Dis-
tributed Monitoring Framework. In: Complex, Intelligent and Software Intensive
Systems (CISIS), International Conference on. pp. 508–513 (2010)

8. Case, J.D., Fedor, M., Schoffstall, M.L., Davin, J.R.: Simple Network Management
Protocol (SNMP). RFC 1157, IETF (May 1990)

9. DeHaan, M.: Ansible. https://www.ansible.com/ (2012–2016)

10. Diekmann, C., Hupel, L., Carle, G.: Semantics-preserving simplification of real-
world firewall rule sets. In: 20th International Symposium on Formal Methods. pp.
195–212 (2015)

11. Dobre, C., Voicu, R., Legrand, I.: Monitoring large scale network topologies. In:
Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), IEEE
6th International Conference on. vol. 1, pp. 218–222 (2011)

12. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. J. Artif. Int. Res. 20(1), 61–124 (2003)

13. Ghijsen, M., van der Ham, J., Grosso, P., Dumitru, C., Zhu, H., Zhao, Z., de Laat,
C.: A semantic-web approach for modeling computing infrastructures. Computers
& Electrical Engineering 39(8), 2553 – 2565 (2013)

14. van der Ham, J., Dijkstra, F., Lapacz, R., Brown, A.: The Network Markup Lan-
guage (NML): A Standardized Network Topology Abstraction for Inter-domain
and Cross-layer Network Applications (2013)

15. van der Ham, J., Dijkstra, F., apacz, R., Zurawski, J.: Network Markup Language
Base Schema version 1 (2013)

16. Hoffmann, J.: Everything you always wanted to know about planning – (but were
afraid to ask). In: KI. Lecture Notes in Computer Science, vol. 7006, pp. 1–13
(2011)



14 INSALATA: Herold et al.

17. Jeroen Johannes van der Ham: A Semantic Model for Complex Computer Net-
works: The Network Description Language. Ph.D. thesis, University of Amsterdam
(2010)

18. Jiang, X., Xu, D.: vBET: A VM-based Emulation Testbed. In: Proceedings of
the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible
Network Research. pp. 95–104 (2003)

19. Lorenzin, L., Cam-Winget, N.: Security Automation and Continuous Monitoring
(SACM) Requirements. Internet-Draft draft-ietf-sacm-requirements-15, Internet
Engineering Task Force (2016)

20. Lyon, G.: nmap(1) – Linux man page (2015)
21. McCloghrie, K., Rose, M.: Management Information Base for network management

of TCP/IP-based internets. RFC 1156, IETF (May 1990)
22. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,

D., Wilkins, D.: PDDL – The Planning Domain Definition Language (1998)
23. OpenVAS: Project Homepage, http://www.openvas.org/
24. Owezarski, P., Berthou, P., Labit, Y., Gauchard, D.: LaasNetExp: A Generic Poly-

morphic Platform for Network Emulation and Experiments. In: Proceedings of the
4th International Conference on Testbeds and Research Infrastructures for the
Development of Networks & Communities. pp. 1–9. No. 24 (2008)

25. Pisa, P.S., Couto, R.S., Carvalho, H.E.T., Neto, D.J.S., Fernandes, N.C., Camp-
ista, M.E.M., Costa, L.H.M.K., Duarte, O.C.M.B., Pujolle, G.: VNEXT: Virtual
network management for Xen-based Testbeds. In: International Conference on the
Network of the Future (NOF11). pp. 41–45 (2011)

26. Puppet Labs: Puppet. https://puppet.com/ (2005–2016)
27. R. Enns and M. Bjorklund and J. Schoenwaelder and A. Bierman: Network Con-

figuration Protocol (NETCONF). RFC 6241, IETF (June 2011)
28. Taketa, T., Hiranaka, Y.: Network Design Assistant System based on Network

Description Language. In: Advanced Communication Technology (ICACT), 15th
International Conference on. pp. 515–518 (2013)

29. Tierney, B., Metzger, J., Boote, J., Boyd, E., Brown, A., Carlson, R., Zekauskas,
M., Zurawski, J., Swany, M., Grigoriev, M.: perfSONAR: Instantiating a Global
Network Measurement Framework. In: In SOSP Workshop on Real Overlays and
Distributed Systems (ROADS09). ACM (2009)

30. Trusted Network Connect Work Group: TNC IF-MAP Bindings for SOAP, Version
2.2, Revision 10 (2014)

31. Trusted Network Connect Work Group: TNC MAP Content Authorization, Ver-
sion 1.0, Revision 36 (2014)

32. Undercoffer, J., Pinkston, J., Joshi, A., Finin, T.: A Target-Centric Ontology for
Intrusion Detection. In: Proceding of the 9th Workshop on Ontologies and Dis-
tributed Systems. pp. 47–58 (2004)

33. Wachs, Matthias and Herold, Nadine and Posselt, Stephan-A. and Dold, Florian
and Carle, Georg: GPLMT: A Lightweight Experimentation and Testbed Manage-
ment Framework. In: Karagiannis, Thomas and Dimitropoulos, Xenofontas (ed.)
Proceedings of 17th International Conference Passive and Active Measurement
(PAM). Springer International Publishing (2016)

34. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-
bler, M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for
Distributed Systems and Networks. pp. 255–270 (2002)

35. Yarochkin, F., Arkin, O., Kydyraliev, M.: xprobe2(1) – Linux man page


