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The plain Newton-min algorithm for solving the linear complementarity problem
(LCP) “0 6 x ⊥ (Mx+ q) > 0” can be viewed as an instance of the plain semismooth
Newton method on the equational version “min(x,Mx+ q) = 0” of the problem. This
algorithm converges for any q when M is an M-matrix, but not when it is a P-matrix.
When convergence occurs, it is often very fast (in at most n iterations for an M-
matrix, where n is the number of variables, but often much faster in practice). In
1990, Harker and Pang proposed to improve the convergence ability of this algorithm
by introducing a stepsize along the Newton-min direction that results in a jump over
at least one of the encountered kinks of the min-function, in order to avoid its points
of nondifferentiability. This paper shows that, for the Fathi problem (an LCP with
a positive definite symmetric matrix M , hence a P-matrix), an algorithmic scheme,
including the algorithm of Harker and Pang, may require n iterations to converge,
depending on the starting point.
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1 Introduction

Let n > 1 be an integer, M ∈ R
n×n be a real matrix, q ∈ R

n be a real vector, and
[1 :n] := {1, . . . , n} be the set of the first n positive integers. The linear complementarity
problem (LCP) consists in searching a vector x ∈ R

n such that

0 6 x ⊥ (Mx+ q) > 0. (1.1)

This means that the sought x must satisfy x > 0, Mx + q > 0 (vectorial inequalities
must be understood componentwise), and xT(Mx + q) = 0 (the exponent “T” is used
to denote matrix transposition). The problem has a combinatorial aspect, which lies
in this last equation, since, by the nonnegativity of x and Mx + q, it amounts to the
set of n complementarity conditions xi(Mx + q)i = 0 for all indices i ∈ [1 :n]. The
term complementarity comes from the fact that, for all i ∈ [1 :n], either xi or (Mx + q)i
must vanish; these conditions may be realized in 2n different ways. Actually, the problem
of determining whether a particular instance of the LCP has a solution is strongly NP-
complete [14], and NP-complete for a P0-matrix (i.e., when M has nonegative principal
minors) [29].

Let F : Rn → R
n be the min-function associated with the LCP (1.1), which is the

function that takes at x ∈ Rn the value

F (x) = min(x,Mx+ q). (1.2)

The Newton-min algorithm can be viewed as an instance of the semismooth Newton
method [40, 31] to solve the equational equivalent form of (1.1) [32, 33, 16] that reads
F (x) = 0. To write compactly the algorithm, it is useful to introduce, for I ⊆ [1 :n] and
its complement A := [1 :n] \ I, the point x(I) defined by

x
(I)
A = 0 and (Mx(I) + q)I = 0,

This point is well defined when M is nondegenerate, meaning that the principal minors
of M do not vanish. The plain Newton-min algorithm computes the next iterate by

x̂ := x(S(x)), (1.3)

where the index selector S : Rn ⊸ [1 :n] is the multifunction defined at x ∈ R
n by

S(x) := {i ∈ [1 :n] : xi > (Mx+ q)i}. (1.4)

In some versions of the algorithm, S(x) also contains some or all the indices in {i ∈ [1 :n] :
xi = (Mx+ q)i}. See paragraph 7 of the introduction of [4] for more details on the origin
of this algorithm and a discussion on the contributions from [12, 31, 23, 22, 8, 7, 24, 28].
When the current iterate x ∈ R

n is not on a kink of F , like in this paper, the Newton-min
algorithm is identical to the Newton method to find a zero of F , which is then well defined.

Even though the Newton-min algorithm uses no globalization technique, like line searches
or trust regions [9, 15], it may converge globally, i.e., from any starting point. This is due
to the very particular piecewise linearity of F . For example, global convergence occurs,
whatever is q, when M is an M-matrix [1], which is a P-matrix (i.e., with positive principal
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minors) with nonpositive off-diagonal elements. It also occurs when M is close enough to
an M-matrix [24]. However, this global convergence property does not extend up to the
larger class of P-matrices [4, 5, 17, 6]. This is unfortunate for the Newton-min algorithm,
since P-matrices are exactly those ensuring the existence and uniqueness of the solution
to the LCP, whatever is q [41, 16].

A natural idea to enlarge the class of matrices, for which the global convergence of the
Newton-min algorithm can be guaranteed, is to introduce a line search on the associated
least-square merit function, which is the function Θ : Rn → R defined at x ∈ R

n by

Θ(x) =
1

2
‖F (x)‖2,

where ‖ · ‖ denotes the Euclidean norm. This least-square function is natural, since it has
been used, often with success, for globalizing the Newton method when the function F is
smooth [18, 15, 9, 26]. In the presence of nonsmoothness of F , like here, this technique
is more difficult to implement since the Newton-min direction d := x̂ − x may not be a
descent direction of Θ at a kink of F [20] (this fact was already observed during the PhD
thesis of I. Ben Gharbia [3; example 5.8]). To overcome this difficulty, Harker and Pang
proposed in [23; p. 275] a method named the Modified Damped-Newton Algorithm, which
consists in taking for the next iterate the point

x+ := x+ (α̌1 + εhp)d,

where α̌1 > 0 is a stepsize so that x + α̌1d is on the first kink of F encountered along d
from x, and εhp > 0 is a number such that the new iterate x+ is not on a kink of F
and ensures a sufficient decrease of the least-square merit function Θ. Consequently, this
algorithm avoids the points of nondifferentiability of F , generates descent directions of Θ,
and forces Θ to decrease sufficiently at each iteration. To the best of our knowledge, the
only convergence result for any line search algorithm using a semi-smooth Newton direction
uses the assumption that lim infk αk > 0 [38], which is a very weak result since this strong
assumption relates to the algorithm products rather than the problem’s data.

In this research field, sparing of theoretical results, this paper provides the value n as a
worse case lower bound on the number of iterations of the Harker and Pang algorithm when
the extra stepsize εhp is taken sufficiently small, which is allowed by the description of the
method given in [23; p. 275]. This lower bound is obtained on the Fathi problem for a set of
starting points, including the one of [21], which is zero. To extend the applicability of this
result, we describe an algorithmic scheme, for which this worse case lower bound is valid;
a scheme that includes the Harker and Pang algorithm for sufficiently small positive εhp.
In this scheme, the iterates avoid the kinks of F and the stepsizes are chosen arbitrarily
between the first two break-stepsizes α̌1 and α̌2 (to be defined). Now, on many practical
problems, an algorithm using the Newton-min direction and a stepsize that is not forced to
be in (α̌1, α̌2) usually finds a solution in much fewer iterations than n; in the experiments
of [20], it is not uncommon to encounter LCPs having up to 105 variables that are solved
in fewer than 10 iterations. Nevertheless, the Fathi problem remains a difficult instance
of LCP for this family of methods, independently of the chosen stepsizes. To illustrate
this, we show in the numerical experiment section that, surprisingly, doing exact line
searches hardly modifies the iteration counter. Finally, this worse case lower bound and
the numerical experiments of section 5 suggest us that it is unlikely that the improvement
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of the Newton-min algorithm can lie in a better determination of the stepsizes. This
observation paves the way for the proposals made in [20].

To conclude this introduction, let us mention that there are a large number of con-
tributions related to the complexity of algorithms for solving the LCP. Most of them
are related to interior point methods and it is out of the scope of this paper to review
them (they can be found by looking at those citing one of the first accounts on the sub-
ject, which is [29, 30]). Other approaches are sometimes qualified as noninterior path-
following/continuation methods and are based on the smoothing of equational versions of
the LCP: the function (a, b) ∈ R

2 7→ a + b − [(a − b)2 + 4µ2]1/2 is considered in [13, 27]
and the smooth Fisher-Burmeister function (a, b) ∈ R

2 7→ a+ b− [a2 + b2 +2µ2]1/2 is used
in [27]. The complexity of these approaches have been studied in [10, 25, 11], for instance.

The paper is structured as follows. The algorithmic scheme, for which the lower bound
on the iterative complexity is obtained, is presented in section 2. The Fathi problem and
two properties of its matrix are given in section 3. The iterative complexity result is proved
in section 4. Finally, some numerical experiments are reported in section 5 and the paper
ends with the conclusion section 6.

Notation. For the n× n matrix M and index sets I and J ⊆ [1 :n], we denote by MIJ

the submatrix of M formed of its elements with row indices in I and column indices in J .
We also define MI : := MI[1 :n] and M−1

II := (MII)
−1.

2 The Newton-min-HP-ext algorithmic scheme

In [23; 1990, p. 275], Harker and Pang proposed a method to solve the LCP (1.1) that they
named the Modified Damped-Newton Algorithm. It is grounded on Newton’s iterations to
find a zero of the function F defined in (1.2), and it is first recalled as algorithm 2.4 below.
Next, we describe an algorithmic scheme (algorithm 2.5), slightly extending the Harker
and Pang algorithm, with the goal of making it a framework encompassing more ways of
determining the stepsizes, in particular the one of Harker and Pang. It is for this last
scheme that the lower bound on the iterative complexity is established.

The concepts of break-stepsizes and break-points will play a major part in the consid-
ered algorithms. After the definition of these notions, we clarify their connection with the
nondifferentiability of F .

Definitions 2.1 (break-stepsize and break-point) A break-stepsize at x ∈ R
n along

a direction d ∈ R
n is a real number α̌ > 0 such that there is an index i ∈ [1 :n] for which

xi 6= (Mx+q)i and (x+α̌d)i = (Mx+q+α̌Md)i. Then, x̌ := x+α̌d is called a break-point.

Lemma 2.2 (kink of F at a break-point) Let α̌ be a break-stepsize at x along the

direction d. Then F is not differentiable at x+ α̌d.

Proof. Denote by x̌ := x + α̌d the break-point corresponding to α̌. Since α̌ is a break-
stepsize, there is an index i ∈ [1 :n] such that xi 6= (Mx+ q)i and x̌i = (Mx̌+ q)i, which
implies that di 6= (Md)i. Now an easy computation provides (see also [38])

F ′
i (x̌; d) = min(di, (Md)i) and F ′

i (x̌;−d) = min(−di,−(Md)i),
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so that
F ′
i (x̌; d) + F ′

i (x̌;−d) = min(di, (Md)i)−max(di, (Md)i) < 0,

because di 6= (Md)i. Hence F is nondifferentiable at x̌. �

Remark 2.3 Whilst F is nondifferentiable at a break-point, this is not necessary the case
for Θ, as shown by the following example: n = 1, M = 2, q = 0, x = −1, and d = 1.
Then α̌ = 1 is a break-stepsize because −1 = x 6= Mx + q = −2 and, for x̌ = x + α̌d,
x̌ = Mx̌+ q = 0. Since

F (x) =

{

2x if x 6 0
x otherwise

and Θ(x) =

{

2x2 if x 6 0
1
2x

2 otherwise,

we see that F is nondifferentiable at x̌ = 0, but that Θ is differentiable at the same point.
This is in agreement with the strong Fréchet differentiability of Θ at a zero of F , proved
in [39; prop. 1]. �

This paper deals with the Newton-min algorithm [1], which is now described with
more precision than in the introduction. The method is similar to the one of Kojima and
Shindo [31] and has the flavor of a semismooth Newton method [40] for finding a zero of
the nonsmooth function F defined by (1.2) [24]. At a point x ∈ R

n, the indices in [1 :n]
are partitioned into three subsets:

A0(x) := {i ∈ [1 :n] : xi < (Mx+ q)i},

E(x) := {i ∈ [1 :n] : xi = (Mx+ q)i},

I0(x) := {i ∈ [1 :n] : xi > (Mx+ q)i}.

Since, for i ∈ A0(x) ∪ I0(x), Fi is differentiable at x, a Newton-like direction d should
satisfy F ′

i (x)d = −Fi(x), which becomes di = −xi for i ∈ A0(x) and Mi :d = −(Mx+ q)i
for i ∈ I0(x), where Mi : denotes the ith row of M . For i ∈ E(x), Fi is usually nonsmooth
at x; to reduce the size of the linear system to solve, these indices are dealt with like those
in A0(x). In summary, the following index sets are introduced

A ≡ A(x) := A0(x) ∪E(x), I ≡ I(x) := I0(x), (2.1)

and the Newton-min direction is defined by

dA = −xA and MI :d = −(Mx+ q)I ≡ −MI :x− qI . (2.2)

As a result, the point x̂ := x+ d targeted by the Newton-min algorithm satisfies

x̂A = 0 and (Mx̂+ q)I = 0. (2.3)

The target point x̂ is the one introduced by (1.3), since S(x) = I with the previous notation.
The system (2.3) has a unique solution when M is nondegenerate, since its second identity
also reads MII x̂I = −qI , which determines x̂I = −M−1

II qI since then MII is nonsingular.
The plain Newton-min algorithm, which takes x+ := x̂ as the iterate following the

current one x, converges locally in one iteration when M is nondegenerate and x is in
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some neighborhood of a solution to the LCP [22]. It also converges globally if M is an M-
matrix [1], but not if M is a P-matrix, since there are counter-examples in that case [4, 5, 6]
(and even when M is a symmetric positive definite matrix [17]).

The purpose of the Harker and Pang algorithm [23; 1990, p. 275] is to improve the
convergence properties of the plain Newton-min algorithm, as already mentioned in the
introduction. For this, a stepsize α > 0 is introduced along the Newton-min direction d,
meaning that the iterate x+ following x is computed by

x+ = x+ αd.

The stepsize α has the very particular form

α = α̌1 + εhp,

where α̌1 is the first break-stepsize in (0, 1) at x along d and εhp > 0 is a positive number
such that x+ is not a break-point of F and Θ(x+) is sufficienty smaller than Θ(x), in the
sense that

Θ(x+) 6 (1− 2ωα)Θ(x), (2.4)

for some ω ∈ (0, 1/2). Since, when E(x) = ∅ (this condition is satisfied recursively by all
the iterates of the algorithm), the directional derivative of Θ at x along the Newton-min
direction d takes the value Θ′(x; d) = −2Θ(x), the previous inequality corresponds to the
usual Armijo condition [2, 9]. This algorithm is summarized below. To the best of our
knowledge, its global convergence has not been proved.

Algorithm 2.4 (Newton-min-HP algorithm) It is supposed that the current it-
erate x is not a solution to (1.1) and verifies E(x) = ∅. The next iterate x+ also
verifies E(x+) = ∅ and is computed as follows.

1. Index sets. Compute A and I by (2.1).
2. Direction. Compute the direction d by (2.2).
3. Stepsize. Compute the smallest break-stepsize α̌1, if any. Then, determine the

stepsize α > 0 by the following rules.

3.1. If there is no break-stepsize in (0, 1), take α = 1 and terminate with x+ d,
3.2. Otherwise take α = α̌1 + εhp, where εhp > 0 is such that

3.2.1. α is not a break-stepsize,
3.2.2. (2.4) holds.

4. New iterate. x+ = x+ αd.

It is not difficult to see that if the condition in step 3.1 holds, x̂ := x+ d is a solution
to (1.1), which justifies the termination. This is because the inequalities verified by x are
preserved at x̂, since there is no break-point in the open segment (x, x̂):

x̂A 6 (Mx̂+ q)A and x̂I > (Mx̂+ q)I . (2.5)

Now, by (2.3), x̂A = 0 and (Mx̂ + q)I = 0, so that 0 6 x̂ ⊥ (Mx̂+ q) > 0 (we have used
(2.5) and A ∪ I = [1 :n]), meaning that x̂ is a solution to the LCP.
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The next algorithm is the one that is studied in section 4. It differs from algorithm 2.4
by the way the stepsizes are determined along the Newton-min direction. Our goal in
the design of algorithm 2.5 is not to make it efficient, but to make it as little binding as
possible, in order to include as many variants of the Newton-min algorithm as possible.
This way, the lower bound on its iterative complexity given in proposition 4.4 below will
be valid for all the algorithms obeying the rules of algorithm 2.5.

Algorithm 2.5 (Newton-min-HP-ext scheme) It is supposed that the current it-
erate x is not a solution to (1.1) and verifies E(x) = ∅. The next iterate x+ is then
computed as follows.

1. Index sets. Compute A and I by (2.1).
2. Direction. Compute the direction d by (2.2).
3. Stepsize. Compute the two smallest distinct break-stepsizes α̌1 and α̌2, if any.

Then, determine the stepsize α > 0 by the following rules.

3.1. If there is no break-stepsize in (0, 1), take α = 1 and terminate with x+ d,
3.2. If there is a single break-stepsize α̌1 in (0, 1), take α in (α̌1, 1],
3.3. If there are at least two break-stepsizes α̌1 and α̌2 in (0, 1), take α in (α̌1, α̌2).

4. New iterate. x+ = x+ αd.

Note that, in general, the Newton-min-HP algorithm is not a particular instance of
algorithm 2.5, because it may occur that α̌1 + εhp > α̌2. Nevertheless, the scheme 2.5
includes the Newton-min-HP algorithm when εhp > 0 is sufficiently small and convergence
of the iterates to a solution occurs. Indeed, when convergence occurs, it occurs in a finite
number of iterations (by the above mentioned convergence in one step when the current
iterate is in some neighborhood of a solution). Then the smallest value of α̌2−α̌1 encoutered
along the iterations (when both α̌1 and α̌2 exist) is > 0, implying that a sufficiently small
positive εhp is in (0, α̌2 − α̌1) or α̌1 + εhp ∈ (α̌1, α̌2).

3 The Fathi problem

As claimed in the abstract, the lower bound on the iterative complexity of the Newton-
min-HP-ext scheme is shown thanks to the Fathi problem. This LCP has its matrix formed
with the one of the Murty LCP, which is first presented.

The Murty problem

The Murty problem [36] is often considered to have the following data M and q, and
starting point x:

M =

















1 0 0 · · · 0
2 1 0 · · · 0

2 2 1
. . . 0

...
...

. . .
. . .

2 2 2 1

















, q = −e, and x = 0, (3.1)
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where e is the vector of all ones. Other values of q are considered in [37; chapter 6].
The matrix M is clearly a P-matrix (its principal minors have the value 1), so that the
problem has a unique solution, which is x̄ = (1, 0, . . . , 0). This problem is extensively
used for assessing algorithms [34, 23, 13], probably because some pivoting methods [35] are
known to require an exponential number of iterations to solve it [37; theorem 6.4]. This
problem is also relatively difficult to solve for the Newton-min algorithm, but not with the
same severity [20].

The Fathi problem

In the Fathi problem [21; 1979], M , q, and the starting point are given by

M =



















1 2 2 2 · · · 2
2 5 6 6 · · · 6
2 6 9 10 · · · 10
2 6 10 13 14
...

...
...

. . .
...

2 6 10 14 · · · 4(n− 1) + 1



















, q = −e, and x = 0. (3.2)

Since M = LLT, where L is the nonsingular lower triangular Murty matrix [36], M is
symmetric positive definite, hence a P-matrix. The unique solution to the Fathi problem
is the same one as for the Murty problem, namely x̄ = (1, 0, . . . , 0). This problem was
introduced in [21] to show the exponential iterative complexity of some pivot algorithms
when the matrix of the LCP is symmetric positive definite.

The analysis of the Newton-min-HP-ext scheme in section 4 relies on the following
two technical properties of the Fathi matrix. The first property determines the vector
vI := M−1

II eI , for some I ⊆ [1 :n], which, according to (2.3) and q = −e, are the nonzero
components of the point x̂ targeted by the Newton-min algorithm at any point x in {x ∈
R
n : xA < (Mx + q)A, and xI > (Mx + q)I}, where A and I form a partition of [1 :n].

In this lemma, the indices of the vector vI are numbered with the indices in I. A similar
convention is adopted for the matrices MII and MAI , where A is some other index subset
of [1 :n].

Lemma 3.1 (two properties of the Fathi matrix) Let A := [2 : k] for some k ∈
[1 :n] (A = ∅ if k = 1), I := [1 :n] \ A, and eA and eI be the vectors of all ones,

with indices taken in A and I respectively. Let M be the Fathi matrix given in (3.2).
Then,

1) vI := M−1
II eI has its components, numbered by the indices of I, given by

vi =

{

2(2k−1)(n−k)+1
4(k−1)(n−k)+1 if i = 1,

(−1)i−k 2(n−i)+1
4(k−1)(n−k)+1 if i ∈ [k + 1 :n],

(3.3)

2) MAIM
−1
II eI > eA, when A 6= ∅.

Proof. 1) We provide a short verification proof. Let us denote by L the lower triangular
matrix of Murty of dimension n, denoted M in (3.1), so that MII = LI : (LI : )

T. We only
have to check that the vector vI given by formula (3.3) satisfies LI : (LI : )

TvI = eI .
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Let us simplify the notation by introducing the positive numbers

a :=
2(n − k)

4(k − 1)(n − k) + 1
and b :=

1

4(k − 1)(n − k) + 1

and let us show that w := (LI : )
TvI takes the value (the numbers on the right are the

indices of the vector w)

w :=

































1 2 2 · · · 2
2 2 · · · 2
...

...
. . .

...
2 2 · · · 2

1 2
. . .

...

1
. . . 2
. . . 2

1

































vI =





























1
−a
...

−a
−b
b
...

(−1)n−kb





























.

1
2
...
k

k + 1
k + 2

...
n

(3.4)

We will use the fact that, for p ∈ N, there holds

1− 3 + 5− 7 + 9 + · · ·+ (−1)p(2p + 1) = (−1)p(p+ 1). (3.5)

Let us first compute, for j ∈ [k + 1 :n], the sum

∑n
i=j vi = b

∑n
i=j(−1)i−k

[

2(n − i) + 1
]

[(3.3)]

= b(−1)k−n
∑n

i=j(−1)n−i
[

2(n− i) + 1
]

= b(−1)k−n
[

1− 3 + 5− 7 + 9 + · · · + (−1)n−j [2(n− j) + 1
]]

= b(−1)k−n
[

(−1)n−j(n+ 1− j)
]

[(3.5) with p = n− j]

= (−1)j−kb(n+ 1− j). (3.6)

The rows of (3.4) with index in [2 : k] now follow from the previous computation with
j = k + 1, since

2
∑n

i=k+1 vi = −2b(n − k) = −a. (3.7)

The first row of (3.4) is also verified since by the previous computation

v1 + 2
∑n

i=k+1 vi =
[

2(2k − 1)(n − k) + 1
]

b− a = 1.

The last (n − k) rows of (3.4) are also verified since for j ∈ [k + 1 :n] there holds, using
(3.3) and (3.6):

vj + 2
∑n

i=j+1 vi = (−1)j−k (2(n − j) + 1)b+ (−1)j+1−k2b(n − j)

= (−1)j−kb [2(n− j) + 1− 2(n − j)]

= (−1)j−kb.
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It remains to observe that LI :w = eI , which follows from

LI :w =















1
2 2 · · · 2 1
2 2 · · · 2 2 1
...

...
. . .

. . .
. . .

. . .

2 2 · · · 2 · · · 2 2 1















w

=















1
2− 2(k − 1)a− b

2− 2(k − 1)a− 2b+ b
...

2− 2(k − 1)a− 2b+ 2b+ · · ·+ (−1)n−kb















= eI ,

since 2(k − 1)a+ b = 1.
2) By the definitions of A and I, when A 6= ∅, MAI has the form (the numbers on the

right are the row indices of MAI)

MAI =















2 6 · · · 6
2 10 · · · 10
2 14 · · · 14
...

...
...

2 4k − 2 · · · 4k − 2















.

2
3
4
...
k

Note that only the first column is present when k = n. Since M−1
II eI is the vector vI given

by (3.3), the row with index i ∈ [2 : k] of MAIM
−1
II eI reads

2v1 + (4i− 2)

n
∑

j=k+1

vj = 2v1 − (4i− 2)(n − k)b,

where we have used (3.6) with j = k+ 1 (see also (3.7)). Its smallest value is obtained for
the largest i, that is i = k, and is, thanks to (3.3):

2v1 − (4k − 2)(n − k)b = 2[2(2k − 1)(n− k) + 1]b− (4k − 2)(n − k)b

= [(4k − 2)(n − k) + 2]b

> 1,

which is the stated result. �

4 A lower bound on the iterative complexity

The goal of this section is to show that the Newton-min-HP-ext scheme (algorithm 2.5)
converges in exactly n iterations on the instance of dimension n of the Fathi problem (3.2)
when the algorithm starts at zero or in some neighborhood of zero. This gives a lower
bound on the iterative complexity of the considered algorithmic scheme.
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The proof of proposition 4.4 below consists in showing that, when the Newton-min-HP-
ext scheme generates a sequence {xk}k>0 with a starting point x0 near zero (in the set X1

introduced below actually), there holds xk ∈ Xk+1, for k ∈ [1 :n], where Xk is defined by

Xk :=
{

x ∈ R
n : xAk

< (Mx+ q)Ak
and xIk > (Mx+ q)Ik ,

(Mx−e−x)i
(Mx−e−x)i+2

<
(M−1

I
k
I
k
eI

k
)i

(M−1

I
k
I
k
eI

k
)i+2

, for all i ∈ [k + 1 :n− 2]
}

,
(4.1)

with Ak = [2 : k] and Ik := [2 : k]c (the complementary set of [2 : k] in [1 :n]). In this
definition, it is assumed that the integer interval [i : j] is empty when j < i (in particular,
A1 = ∅ and the strict inequalities after the second one are not present if k > n− 2).

Remarks 4.1 1) There holds 0 ∈ X1. Indeed, A1 = ∅, I1 = [1 :n], 0 > M0 + q = −e
and, for i ∈ [2 :n− 2]:

(M0− e− 0)i
(M0− e− 0)i+2

= 1 <
2(n− i) + 1

2(n − i− 2) + 1
=

(M−1e)i
(M−1e)i+2

,

where we have used (3.3). This observation also shows that X1 6= ∅.

2) The fact that Xk 6= ∅ for k ∈ [2 :n] will be a consequence of lemma 4.2 below.

3) The set Xn = {x ∈ R
n : x[2 :n] < (Mx+ q)[2 :n] and x1 > (Mx+ q)1} is the one to which

belongs the solution to the Fathi problem, namely x̄ = (1, 0, . . . , 0).

4) By the strict inequalities in their definition, the sets Xk are open (more precisely they
are interiors of polyhedrons), so that they are not reduced to a single point. By the
first two strict inequalities in their definition, these sets are also two by two disjoint.

5) The last group of inequalities in the definition (4.1) of Xk is essential for our analysis.
Let X ′

k := {x ∈ R
n : xAk

< (Mx+ q)Ak
and xIk > (Mx+ q)Ik} be the set Xk without

these inequalities.

r A first observation is that the last group of inequalities in Xk is not redundant. For
example, if n = 4, x0 := e/31 belongs to X ′

1, since x0 > (Mx0 + q), but not to X1.

r Another observation is that the iterate following one in X ′
k is not necessarily in X ′

k+1,
hence the usefulness of working with Xk instead of X ′

k. For example, again for n = 4,
we have seen that x0 = e/31 is in X ′

1, but the next iterate x1 computed by our code
implementing algorithm 2.5 satisfies x14 < (Mx1+ q)4 and x1{1,2,3} > (Mx1+ q){1,2,3},

so that x1 is not in X ′
2. �

We start with the following fundamental lemma (fundamental for our purpose, since it
contains the essential idea of the proof), which shows that if the current iterate x of the
Newton-min-HP-ext scheme is in Xk, the next iterate x+ = x+ αd will be in Xk+1. In its
proof, for positive integers i, s, and j, we use the notation

[i : s : j] := {i, i + s, i+ 2s, . . . , i+ ⌊(j − i)/s⌋s},

where ⌊·⌋ is the floor operator (⌊r⌋ is the integer number i such that r is in [i, i+1)); hence
[i : 1 : j] = [i : j].
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Lemma 4.2 (one iteration from x to x
+) Let M and q be the matrix and vector

defining the Fathi problem (3.2) of dimension n > 2. Suppose that the current iterate x
of the Newton-min-HP-ext scheme is in Xk for some k ∈ [1 :n − 1]. Then, the next

iterate x+ = x+ αd is in Xk+1 and, when k 6 n− 3, the stepsize α is in (0, 1).

Proof. Let k ∈ [1 :n − 1], x ∈ Xk, and set A ≡ Ak := [2 : k] and I ≡ Ik := [1 : n] \ A, so
that

xA < (Mx+ q)A and xI > (Mx+ q)I .

The next iterate is then defined by x+ := x+ αd, where

d =

(

0A
M−1

II eI

)

− x (4.2)

and the stepsize α is chosen as described in step 3 of algorithm 2.5. We have to prove that
for some α̌ ∈ (0, 1) there hold

(x+ td)A < (Mx+ q + tMd)A, for all t ∈ [0, α̌], (4.3a)

(x+ α̌d)k+1 = (Mx+ q + α̌Md)k+1, (4.3b)

(x+ td)I\{k+1} > (Mx+ q + tMd)I\{k+1}, for all t ∈ [0, α̌], (4.3c)

if k 6 n− 3, then α ∈ (α̌, 1), (4.3d)

(Mx+−e−x+)i
(Mx+−e−x+)i+2

<
(M−1

I+I+
e
I+

)i

(M−1

I+I+
e
I+

)i+2

, for all i ∈ [k + 2 :n− 2], (4.3e)

where I+ := Ik+1 = [1 :n] \ [2 : k + 1]. Indeed, if (4.3) is shown:

r by (4.3a)–(4.3c), the first break-stepsize α̌1 is α̌ ∈ (0, 1) and this break-stepsize is due
to the index k + 1,

r since x ∈ Xk, it follows, using also (4.3b), that (x + td)k+1 > (Mx + q + tMd)k+1 for
t < α̌, so that the reverse inequality holds for t > α̌, implying that k + 1 ∈ A(x+),

r since the stepsize α taken by algorithm 2.5 is less than the possible next break-stepsize
α̌2 > α̌1, the inequalities (4.3a) and (4.3c) hold at x+αd = x+; hence A(x+) = [2, k+1]
and I(x+) = [1 :n] \ [2, k + 1].

r Now with (4.3e), x+ is in Xk+1.

This implies that the first two strict inequalities in the definition of Xk+1 hold. The last
group of inequalities is just (4.3e). Finally, (4.3d) shows indeed that α ∈ (0, 1). Let us
now prove (4.3).

The equality (x+ td)i = (Mx+ q+ tMd)i is equivalent to t(d−Md)i = (Mx+ q− x)i
or, using (4.2) and the value of q = −e, this identity can be rewritten

t

[(

0A
M−1

II eI

)

−

(

MAIM
−1
II eI

eI

)

+Mx− x

]

i

= [Mx− e− x]i . (4.4)

Consider the indices i ∈ A. By (4.4), the equality (x + td)i = (Mx + q + tMd)i is
equivalent to

t
[

eA −MAIM
−1
II eI + (Mx− e− x)A

]

i
= [Mx− e− x]i

12



or to
t

1− t
=

(Mx− e− x)i

(eA −MAIM
−1
II eI)i

. 1

−1
t

1−t

Observe that the left-hand side is nonnegative if and only if t ∈ [0, 1). Furthermore, the
right-hand side is negative, since the numerator is positive by the assumption on x and
the index i ∈ A, while the denominator is negative by point 2 of lemma 3.1. This implies
that this identity cannot be realized by some t ∈ [0, 1]. Consequently

∀ t ∈ [0, 1] : (x+ td)A < (Mx+ q + tMd)A

and (4.3a) holds, provided we show that α̌ 6 1.
Consider now the indices i ∈ I. By (4.4), the equality (x+ td)i = (Mx+ q + tMd)i is

now equivalent to
t
[

M−1
II eI + (Mx− e− x)I

]

i
= [Mx− e− x]i

or to
t

1− t
=

(Mx− e− x)i

(M−1
II eI)i

. (4.5)

For i ∈ I, the numerator of the fraction in the right-hand side is negative, so that the right-
hand side is positive when (M−1

II e)i is also negative, that is for i ∈ [k+1 : 2 :n] according to
(3.3). By the monotonicity of the map t 7→ t/(1−t), the smallest break-stepsize at x along d
is due to the index i giving the smallest fraction in the right-hand side. Since x ∈ Xk,
the third inequality in the definition (4.1) of Xk and the negativity of (Mx− e − x)i and
(M−1

II eI)i for i ∈ [k+1 : 2 :n] tell us that this occurs for the smallest index i ∈ [k+1 : 2 :n],
that is for k+1 (note that we use here only half of these third inequalities in the definition
of Xk; the others will be used below for getting (4.3e)). Therefore, we have shown (4.3b)
and (4.3c) for the unique solution α̌ of

α̌

1− α̌
=

(Mx− e− x)k+1

(M−1
II eI)k+1

,

which is in (0, 1).
The reasonings in the previous two paragraphs also tell us that there are ⌈(n − k)/2⌉

break-stepsizes in the interval (0, 1), which are due to the indices [k + 1 : 2 :n]. Therefore,
when k 6 n − 3, there are at least two break-stepsizes in (0, 1) and, by the step 3.3 of
algorithm 2.5, there holds α̌1 < α < α̌2 < 1, showing that α is in (0, 1). This shows (4.3d).

We still have to prove (4.3e) at the next iterate x+ = x+αd, where the stepsize α > 0
is determined in step 3 of algorithm 2.5. Observe first that, for i ∈ [k+2 :n−2] ⊆ I+ ⊆ I,
lemma 3.1 ensures the following identity on the ratio in the right-hand side of (4.3e):

(M−1
I+I+eI+)i

(M−1
I+I+

eI+)i+2

=
2(n− i) + 1

2(n− i− 2) + 1
=

(M−1
II eI)i

(M−1
II eI)i+2

.

Therefore, since x+ is defined using M−1
II eI , instead of (4.3e), it is easier to prove the

following equivalent inequality:

(Mx+ − e− x+)i
(Mx+ − e− x+)i+2

<
(M−1

II eI)i

(M−1
II eI)i+2

, for all i ∈ [k + 2 :n− 2]. (4.6)

13



Observe now that the numerators (and the denominators) in (4.6) are linked by

(Mx+ − e− x+)I = (Mx− e− x)I + α(Md − d)I

= (Mx− e− x)I + α(eI − (Mx)I −M−1
II eI + xI) [(4.2)]

= (1− α)(Mx− e− x)I − αM−1
II eI . (4.7)

Take now i ∈ [k + 2 :n− 2]. Then i ∈ I, k 6 n− 4, so that α ∈ (0, 1) by (4.3d). Note also
that i+ 2 ∈ I. Using (4.7), the quotient in the left-hand side of (4.6) becomes

(Mx+ − e− x+)i
(Mx+ − e− x+)i+2

=
−α(M−1

II eI)i + (1− α)(Mx − e− x)i

−α(M−1
II eI)i+2 + (1− α)(Mx − e− x)i+2

. (4.8)

The quotient in the right-hand side of (4.8) can be written a+s
b+t with the notation

a := −α(M−1
II eI)i, s := (1− α)(Mx− e− x)i,

b := −α(M−1
II eI)i+2, t := (1− α)(Mx− e− x)i+2.

Observe that

r t = (1− α)(Mx − e− x)i+2 < 0, because α < 1 and i+ 2 ∈ I,
r b+ t = (Mx+ − e− x+)i+2 < 0, because i+ 2 ∈ I+ by (4.3a)-(4.3c),
r
s
t <

a
b , because

s

t
=

(Mx− e− x)i
(Mx− e− x)i+2

<
(M−1

II eI)i

(M−1
II eI)i+2

=
a

b
,

where the strict inequality comes from the fact that x ∈ Xk and {i, i+ 2} ⊆ I.

It follows that a+s
b+t < a

b . Therefore (4.8) becomes (4.6), from which (4.3e) follows directly.
�

By the previous lemma, if the initial iterate x0 belongs to X1, after n − 1 iterations,
the iterate xn−1 belongs to

Xn := {x ∈ R
n : x[2 :n] < (Mx+ q)[2 :n] and x1 > (Mx+ q)1}, (4.9)

to which the solution x̄ = e1 belongs. Hence the question arises to know whether one can
have xn−1 = x̄ and therefore converge in n− 1 iterations. The next lemma invalidates this
possibility.

Lemma 4.3 (xn−1 6= x̄) Let M and q be the matrix and vector defining the Fathi

problem (3.2) of dimension n > 2. Then, algorithm 2.5, starting at a point x ∈ Xn−1

finds a point x+ ∈ Xn that differs from the solution x̄ = e1 to the LCP problem (1.1).

Proof. Let us simplify the notation by setting A := [2 :n− 1] and I = {1, n}. Then

Xn−1 = {x ∈ R
n : xA < (Mx+ q)A and xI > (Mx+ q)I}.

By algorithm 2.5, the iterate following x ∈ Xn−1 satisfies

x+ = x+ α((0A, vI)− x) = (1− α)x+ α(0A, vI), (4.10)
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where vI is given by (3.3) with the index set I introduced above (see the comment before
lemma 3.1) and α > 0 is the stepsize. We want to show that x+ 6= x̄.

We proceed by contradiction, assuming that x+ = x̄. Then, x+1 = 1, x+A = 0, and
x+n = 0. According to (4.10) and (3.3) with k = n− 1, the first and third conditions read

(1− α)x1 + α
4n− 5

4n− 7
= 1 and (1− α)xn + α

−1

4n− 7
= 0. (4.11)

By the second identity in (4.11),
α 6= 1. (4.12)

Then (4.10) and x+A = 0 imply that
xA = 0. (4.13)

Furthermore, adding the first identity in (4.11) and twice the second yields (1 − α)(x1 +
2xn) + α = 1, which, thanks to (4.12), implies that

x1 + 2xn = 1. (4.14)

Now, since x ∈ Xn−1, there hold x1 > (Mx+ q)1 and xn > (Mx+ q)n. Therefore

x1 + xn > (Mx+ q)1 + (Mx+ q)n

=
[

x1 + 2xn − 1
]

+
[

2x1 + (4n − 3)xn − 1
]

[(3.2) and (4.13)]

= 3x1 + (4n − 1)xn − 2

or
(x1 + 2xn) + (2n− 3)xn < 1.

Using (4.14) and n > 2, we get xn < 0, which is in contradiction with α ∈ [0, 1] and the
second identity in (4.11). �

The restriction on n > 2 in lemma 4.3 is necessary, since when n = 1 the set Xn−1

appearing in its statement does not exist.

Proposition 4.4 (worse case lower bound of the Newton-min-HP-ext
scheme) Let M and q be the matrix and vector defining the Fathi problem (3.2) of di-

mension n > 2. Then, algorithm 2.5, starting at a point x ∈ Xk, for some k ∈ [1 :n−1],
finds the solution to the problem in exactly n − k + 1 iterations. In particular, when

started at x ∈ X1 or at x = 0, algorithm 2.5 finds the solution in exactly n iterations.

Proof. The first claim comes from the fact that in one iteration the algorithm finds
a point in Xk+1 (by lemma 4.2). Applying this argument repetitively, we see that the
algorithm finds a point on Xn−1 in n− k− 1 iterations. By lemma 4.3, the algorithm finds
next a point in Xn in one more iteration, but this point is not the solution. Hence, one
more iteration is necessary to get the solution and this is what algorithm 2.5 does. Indeed,
if an iterate x ∈ Xn, then there holds x[2 :n] < (Mx+ q)[2 :n] and x1 > (Mx+ q)1 by (4.9),

so that the next iterate x+ satisfies x+[2 :n] = 0 and x+1 = 1 if a unit stepsize is taken, which

is indeed the choice of the algorithm. Hence x+ is the solution.
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The second claim can be deduced from the first claim with k = 1 and the use of the
fact that 0 ∈ X1 (see remark 4.1(1)). �

Proposition 4.4 is not valid for n = 1. Indeed, in that case, X1 = Xn = R and an initial
iterate x0 ∈ X1 can be the solution x̄ = 1, hence requiring no iteration to converge.

Corollary 4.5 (worse case lower bound of the Newton-min-HP algorithm)
Let M and q be the matrix and vector defining the Fathi problem (3.2) of dimension

n > 2. Then, algorithm 2.4 with εhp > 0 sufficiently small, starting at a point x ∈ Xk,

for some k ∈ [1 :n−1], finds the solution to the problem in exactly n−k+1 iterations.

In particular, when started at x ∈ X1 or at x = 0, algorithm 2.4 finds the solution in

exactly n iterations.

Proof. This is because, when εhp > 0 is sufficiently small, the stepsizes α are in (α̌1, α̌2)
(see the comment given after the statement of algorithm 2.5) and proposition 4.4 applies.

�

The behavior of algorithm 2.4 may be different from the one described in the previous
corollary, when εhp > 0 is not taken sufficiently small and that the condition α ∈ (α̌1, α̌2)
is not satisfied at some iterations. In particular, it could be more (or less) efficient. Never-
theless, the experiment of the next section suggests us that it could be much less efficient
with a larger value of εhp > 0 (compare columns 3 and 4 in table 5.1).

5 Numerical experiments

We have written a piece of software in Matlab, called Nmhp [19], which implements 3 meth-
ods.

(M1) The first method is the Harker and Pang algorithm (algorithm 2.4), in which the
extra stepsize εhp > 0 is determined from an initial value ε0

hp
> 0 prescribed by

the user. In the numerical experiments reported below, we have taken the latter
small (ε0

hp
:= 10−7 or 10−5), while εhp := ε0

hp
/2i, where i is the smallest nonnegative

integer such that the two conditions in step 3.2 of algorithm 2.4 are satisfied. This is
always possible since the number of break-stepsizes is finite and the Armijo condition
(2.4) is satisfied with strict inequality for α = α̌1 thanks to the choice of ω ∈ (0, 1/2).

(M2) The second method is the extended version of the Harker and Pang algorithm (algo-
rithm 2.5), in which the stepsize is fixed to α = (α̌1+α̌2)/2. According to lemma 4.2
on algorithm 2.5, the results would not be modified on the Fathi problem by taking
any stepsize in (α̌1, α̌2).

(M3) The third method is a variant of the Newton-min algorithm with exact line search
(meaning that x+ := x + αd where α > 0 is such that Θ(x+) = min{Θ(x + α′d) :
α′ > 0}). With exact line search, it is no longer guaranteed that E(x) = ∅ at all
iterate x. This implies that a descent direction of Θ must be determined even when
E(x) 6= ∅. We have chosen the Newton-min-hybrid direction defined in [20]. In this
approach, an index i is chosen to be in E(x) when |xi − (Mx+ q)i| 6 10−11, it is in
A0(x) when xi < (Mx+ q)i − 10−11, and in I0(x) when xi > (Mx+ q)i + 10−11.
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These methods have been run on various instances of the Fathi problem, taking zero for
initial iterate. The numbers of iterations are gathered in table 5.1, together with those given

Number of iterations
Harker-Pang algorithm

Algorithm 2.5
in Nmhp

Exact
line searchn In [23]

Algorithm 2.4 in Nmhp with
ε0
hp

= 10−7 ε0
hp

= 10−5

8 8 8 8 8 8
16 16 16 16 16 16
32 32 32 32 32 32
64 65 64 64 64 64

128 63 128 128 128 128
256 - 256 256 256 256
512 - 512 524 512 513

1024 - 1024 6367 1024 1025
2048 - 2048 16337 2048 2049

Table 5.1: Comparison of the number of iterations required to solve the Fathi problem
of dimension n (1st column) starting at zero by several algorithms: the 2nd column gives
the results of Harker and Pang in [23], the 3rd and 4th column gives the results of our
implementation in Nmhp of algorithm 2.4 with ε0

hp
= 10−7 and 10−5, the 5th column are

those of algorithm 2.5 in Nmhp, and the last column gives the results of the exact line
search Newton-min-hybrid algorithm.

by Harker and Pang in [23; table 5, example 2]. The first column gives the dimension n of
the Fathi problem.

Here are some observations on the reported statistics (see table 5.1).

(O1) The results obtained by algorithm 2.5 of Nmhp (5th column) are in accordance with
proposition 4.4: the number of iterations is n.

(O2) The results given by Harker and Pang in [23] (2nd column) differ from n, for n = 64
and 128, and are not given for larger dimensions. The differences with algorithm 2.5
can only come from the stepsize α > 0 taken along the Newton-min direction. The
results of [23] for n = 64 and 128 could be explained by invoking rounding errors in
the piece of software producing these results or, according to the proof of lemma 4.2,
by the fact that α̌1 + εhp > α̌2 at some iterations when n = 64 and 128.

(O3) Nevertheless, we have not been able to reproduce the results of Harker and Pang [23]
with our implementation of algorithm 2.4: in accordance with corollary 4.5, when
ε0
hp

is sufficiently small one recovers the n iterations to find the solution (ε0
hp

= 10−7

is small enough for the considered dimensions, see the 3rd column in table 5.1), but
when ε0

hp
is larger, the number of iterations has a tendency to increase (this is the

case for ε0
hp

= 10−5, see the 4th column in table 5.1), not to decrease as in the
results of [23].

(O4) The results obtained with the exact line search Newton-min-hybrid algorithm (last
column) are surprising: the number of iterations differs from n by at most one unit.
In other words, having a line search determining the best possible decrease of Θ does
not improve the iteration counter (note that a modification of the stepsize changes
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the following direction). Proving this result would certainly be more difficult than
the one shown in this paper, because the output of the code indicates that the change
in the index sets (A, I) along the iterations does not follow the simple mechanism
highlighted by lemma 4.2. Nevertheless, this last experiment supports the conclusion
that any progress in the efficiency of the Newton-min is unlikely to come from a
better line search procedure.

6 Conclusion

This paper is a contribution to the better understanding of the Newton-min algorithm
with line search on the least-square merit function for solving the linear complementarity
problem. It examines in details the behavior of the Harker and Pang globalization of the
algorithm on the Fathi problem. It is mathematically proved and numerically observed
that, if the first iterate is in some open polyhedral neighborhood of zero, then the algo-
rithm requires exactly n iterations to find the solution to the problem (n is the number
of variables). Whilst this is not disastrous, for very large problems, it is not as attractive
as the best path-following algorithms (interior or non-interior), whose iterative complexity
is in O(n1/2), and it does not reflect the excellent behavior of the Newton-min algorithm
on many large scale problems coming from concrete applications [20]. Nevertheless, the
realized precise computation of the number of iterations for the Fathi problem provides
a lower bound on the provable iterative complexity of the Harker and Pang version of
the Newton-min algorithm with line search, on a class of problems containing the Fathi
problems. Numerical experiments suggest that this worse case lower bound could also be
valid if an exact line search is performed.
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