Skip to Main content Skip to Navigation
Conference papers

Budget-aware scheduling algorithms for scientific workflows with stochastic task weights on heterogeneous IaaS Cloud platforms

Yves Caniou 1 Eddy Caron 2, 1 Aurélie Kong Win Chang 3 Yves Robert 3
1 AVALON - Algorithms and Software Architectures for Distributed and HPC Platforms
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
3 ROMA - Optimisation des ressources : modèles, algorithmes et ordonnancement
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : This paper introduces several budget-aware algorithms to deploy scientific workflows on IaaS Cloud platforms, where users can request Virtual Machines (VMs) of different types, each with specific cost and speed parameters. We use a realistic application/platform model with stochastic task weights, and VMs communicating through a datacenter. We extend two well-known algorithms, MIN-MIN and HEFT, and make scheduling decisions based upon machine availability and available budget. During the mapping process, the budget-aware algorithms make conservative assumptions to avoid exceeding the initial budget; we further improve our results with refined versions that aim at rescheduling some tasks onto faster VMs, thereby spending any budget fraction leftover by the first allocation. These refined variants are much more time-consuming than the former algorithms, so there is a trade-off to find in terms of scalability. We report an extensive set of simulations with workflows from the Pegasus benchmark suite. Most of the time our budget-aware algorithms succeed in achieving efficient makespans while enforcing the given budget, despite (i) the uncertainty in task weights and (ii) the heterogeneity of VMs in both cost and speed values.
Complete list of metadatas

Cited literature [26 references]  Display  Hide  Download

https://hal.inria.fr/hal-01808831
Contributor : Yves Caniou <>
Submitted on : Wednesday, June 6, 2018 - 10:18:08 AM
Last modification on : Wednesday, November 20, 2019 - 3:06:58 AM
Document(s) archivé(s) le : Friday, September 7, 2018 - 12:48:58 PM

File

hcw.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Yves Caniou, Eddy Caron, Aurélie Kong Win Chang, Yves Robert. Budget-aware scheduling algorithms for scientific workflows with stochastic task weights on heterogeneous IaaS Cloud platforms. IPDPSW 2018 - IEEE International Parallel and Distributed Processing Symposium Workshops, May 2018, Vancouver, Canada. pp.15-26, ⟨10.1109/IPDPSW.2018.00014⟩. ⟨hal-01808831⟩

Share

Metrics

Record views

248

Files downloads

405