L. F. Abbott, N. , and S. B. , Synaptic plasticity: taming the beast, Nature Neuroscience, vol.3, issue.Supp, pp.1178-1183, 2000.
DOI : 10.1038/81453

K. K. Ade, M. J. Janssen, P. I. Ortinski, and S. Vicini, Differential Tonic GABA Conductances in Striatal Medium Spiny Neurons, Journal of Neuroscience, vol.28, issue.5, pp.1185-1197, 2008.
DOI : 10.1523/JNEUROSCI.3908-07.2008

J. Ahumada, D. Fernández-de-sevilla, A. Couve, W. Buño, and M. Fuenzalida, Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors, Hippocampus, vol.31, issue.Part 1, pp.1439-1452, 2013.
DOI : 10.1523/JNEUROSCI.5303-10.2011

E. X. Albuquerque, E. F. Pereira, M. Alkondon, R. , and S. W. , , 2009.

, Mammalian nicotinic acetylcholine receptors: from structure to function, Physiol. Rev, vol.89, 2008.

Y. Andrade-talavera, P. Duque-feria, O. Paulsen, and A. Moreno, Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus, Cerebral Cortex, vol.21, issue.8, pp.3637-3654, 2016.
DOI : 10.1523/JNEUROSCI.0481-10.2010

A. Araque, G. Carmignoto, P. G. Haydon, S. H. Oliet, R. Robitaille et al., Gliotransmitters Travel in Time and Space, Neuron, vol.81, issue.4, pp.728-739, 2014.
DOI : 10.1016/j.neuron.2014.02.007

N. M. Bannon, M. Chistiakova, J. Chen, M. Bazhenov, and M. Volgushev, Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes, The Journal of Neuroscience, vol.37, issue.6, pp.1439-1452, 2016.
DOI : 10.1523/JNEUROSCI.2984-16.2016

L. Bar-ilan, A. Gidon, and I. Segev, The role of dendritic inhibition in shaping the plasticity of excitatory synapses, Frontiers in Neural Circuits, vol.6, 2013.
DOI : 10.3389/fncir.2012.00118

C. C. Bell, V. Z. Han, Y. Sugawara, and K. Grant, Synaptic plasticity in a cerebellum-like structure depends on temporal order, Nature, vol.387, issue.6630, pp.278-281, 1038.
DOI : 10.1038/387278a0

V. A. Bender, K. J. Bender, D. J. Brasier, and D. E. Feldman, Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex, Journal of Neuroscience, vol.26, issue.16, pp.4166-4177, 2006.
DOI : 10.1523/JNEUROSCI.0176-06.2006

Y. Bernardinelli, D. Muller, and I. Nikonenko, Astrocyte-Synapse Structural Plasticity, Neural Plasticity, vol.174, issue.1, p.232105, 2014.
DOI : 10.1016/j.neuron.2005.04.001

G. Bi and M. Poo, Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type, The Journal of Neuroscience, vol.18, issue.24, pp.10464-10472, 1998.
DOI : 10.1523/JNEUROSCI.18-24-10464.1998

S. Bissière, Y. Humeau, and A. Lüthi, Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition, Nature Neuroscience, vol.108, issue.6, pp.587-592, 1038.
DOI : 10.1016/S0165-0270(01)00374-0

F. Brandalise, S. Carta, F. Helmchen, J. Lisman, and U. Gerber, , 2016.

, Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells, Nat. Commun

Z. Brzosko, W. Schultz, and O. Paulsen, Author response image 1., eLife, vol.106, 2015.
DOI : 10.7554/eLife.09685.018

Z. Brzosko, S. Zannone, W. Schultz, C. Clopath, and O. Paulsen, Author response, eLife, vol.31, 2017.
DOI : 10.7554/eLife.27756.020

D. Bush, J. , and Y. , Calcium control of triphasic hippocampal STDP, Journal of Computational Neuroscience, vol.79, issue.11, pp.495-514, 2012.
DOI : 10.1016/S0006-3495(00)76469-1

URL : http://epubs.surrey.ac.uk/576986/6/calcium_control.pdf

P. Calabresi, B. Picconi, A. Tozzi, V. Ghiglieri, D. Filippo et al., Direct and indirect pathways of basal ganglia: a critical reappraisal, Nature Neuroscience, vol.86, issue.8, pp.1022-1030, 2014.
DOI : 10.1038/466449a

K. D. Carlson, G. , N. S. , L. , and G. , Interplay of the magnitude and time-course of postsynaptic Ca2???+??? concentration in producing spike timing-dependent plasticity, Journal of Computational Neuroscience, vol.96, issue.66, pp.747-758, 1038.
DOI : 10.1073/pnas.96.8.4650

J. Cho, I. T. Bayazitov, E. G. Meloni, K. M. Myers, W. A. Carlezon et al., Coactivation of thalamic and cortical pathways induces input timing???dependent plasticity in amygdala, Nature Neuroscience, vol.29, issue.1, pp.113-122, 2011.
DOI : 10.1523/JNEUROSCI.0258-09.2009

W. Chung, C. A. Welsh, B. A. Barres, and B. Stevens, Do glia drive synaptic and cognitive impairment in disease?, Nature Neuroscience, vol.58, issue.11, pp.1539-1545, 2015.
DOI : 10.1523/JNEUROSCI.1333-13.2013

URL : http://europepmc.org/articles/pmc4739631?pdf=render

C. Clopath, L. Büsing, E. Vasilaki, and W. Gerstner, Connectivity reflects coding: a model of voltage-based STDP with homeostasis, Nature Neuroscience, vol.99, issue.3, pp.344-352, 2010.
DOI : 10.1038/nn0705-839

R. Corlew, Y. Wang, H. Ghermazien, A. Erisir, and B. D. Philpot, Developmental Switch in the Contribution of Presynaptic and Postsynaptic NMDA Receptors to Long-Term Depression, Journal of Neuroscience, vol.27, issue.37, pp.9835-9845, 2007.
DOI : 10.1523/JNEUROSCI.5494-06.2007

J. J. Couey, R. M. Meredith, S. Spijker, R. B. Poorthuis, A. B. Smit et al., Distributed Network Actions by Nicotine Increase the Threshold for Spike-Timing-Dependent Plasticity in Prefrontal Cortex, Neuron, vol.54, issue.1, pp.73-87, 2007.
DOI : 10.1016/j.neuron.2007.03.006

Y. Cui, V. Paillé, H. Xu, S. Genet, B. Delord et al., Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity, The Journal of Physiology, vol.97, issue.13, pp.2833-2849, 1113.
DOI : 10.1152/jn.01228.2006

URL : https://hal.archives-ouvertes.fr/hal-01141205

Y. Cui, I. Prokin, A. Mendes, H. Berry, and L. Venance, Robustness of STDP to spike timing jitter, 2018.
DOI : 10.1101/259648

URL : https://hal.archives-ouvertes.fr/hal-01788826

Y. Cui, I. Prokin, H. Xu, B. Delord, S. Genet et al., Author response, eLife, vol.97, issue.801, 2016.
DOI : 10.7554/eLife.13185.020

V. Cutsuridis, GABA inhibition modulates NMDA-R mediated spike timing dependent plasticity (STDP) in a biophysical model, Neural Networks, vol.24, issue.1, pp.29-42, 2011.
DOI : 10.1016/j.neunet.2010.08.005

V. Cutsuridis, Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition, Cognitive Neurodynamics, vol.395, issue.10, pp.421-441, 2012.
DOI : 10.1038/25665

Y. Dan and M. Poo, Spike Timing-Dependent Plasticity: From Synapse to Perception, Physiological Reviews, vol.86, issue.3, 2005.
DOI : 10.1126/science.1082212

N. C. Danbolt, Glutamate uptake, Progress in Neurobiology, vol.65, issue.1, pp.1-105, 2001.
DOI : 10.1016/S0301-0082(00)00067-8

M. Day, D. Wokosin, J. L. Plotkin, X. Tian, and D. J. Surmeier, Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites, Journal of Neuroscience, vol.28, issue.45, pp.11603-11614, 2008.
DOI : 10.1523/JNEUROSCI.1840-08.2008

URL : http://www.jneurosci.org/content/28/45/11603.full.pdf

D. Pittà, M. Brunel, and N. , Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study, Neural Plast, p.7607924, 2016.

D. Pittà, M. Volman, V. Berry, H. , B. et al., A tale of two stories: astrocyte regulation of synaptic depression and facilitation, PLoS Comput. Biol, 2011.

D. Pittà, M. Volman, V. Berry, H. Parpura, V. Volterra et al., Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity, Front. Comput. Neurosci, 2012.

D. Debanne, B. H. Gähwiler, and S. M. Thompson, Bidirectional Associative Plasticity of Unitary CA3-CA1 EPSPs in the Rat Hippocampus In Vitro, Journal of Neurophysiology, vol.13, issue.5, pp.2851-2855, 1997.
DOI : 10.1038/371704a0

D. Debanne, B. H. Gähwiler, and S. M. Thompson, Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures, The Journal of Physiology, vol.248, issue.1, pp.237-247, 1998.
DOI : 10.1113/jphysiol.1993.sp019946

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7793.1998.237bu.x/pdf

E. Edelmann, E. Cepeda-prado, M. Franck, P. Lichtenecker, T. Brigadski et al., Theta Burst Firing Recruits BDNF Release and Signaling in Postsynaptic CA1 Neurons in Spike-Timing-Dependent LTP, Neuron, vol.86, issue.4, pp.1041-1054, 2015.
DOI : 10.1016/j.neuron.2015.04.007

URL : https://doi.org/10.1016/j.neuron.2015.04.007

E. Edelmann, E. Cepeda-prado, and V. Leßmann, Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons, Frontiers in Synaptic Neuroscience, vol.106, 2017.
DOI : 10.1073/pnas.0900546106

E. Edelmann and V. Lessmann, Dopamine modulates spike timingdependent plasticity and action potential properties in CA1 pyramidal neurons of acute rat hippocampal slices. Front. Synaptic Neurosci, 2011.
DOI : 10.3389/fnsyn.2011.00006

URL : https://www.frontiersin.org/articles/10.3389/fnsyn.2011.00006/pdf

E. Edelmann and V. Lessmann, Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus, Frontiers in Neuroscience, vol.7, 2013.
DOI : 10.3389/fnins.2013.00025

E. Edelmann, V. Leßmann, and T. Brigadski, Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity, Neuropharmacology, vol.76, pp.610-627, 2014.
DOI : 10.1016/j.neuropharm.2013.05.043

V. Egger, D. Feldmeyer, and B. Sakmann, Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex, Nature Neuroscience, vol.41, issue.12, pp.1098-1105, 1999.
DOI : 10.1016/0306-4522(91)90333-J

R. C. Evans, K. T. Blackwell, R. C. Evans, T. Morera-herreras, Y. Cui et al., Calcium: amplitude, duration, or location? The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons, Biol. Bull. PLoS Comput. Biol, vol.228, pp.75-83, 2012.

D. E. Feldman, Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex, Neuron, vol.27, issue.1, pp.45-56, 2000.
DOI : 10.1016/S0896-6273(00)00008-8

URL : https://doi.org/10.1016/s0896-6273(00)00008-8

D. E. Feldman, The Spike-Timing Dependence of Plasticity, Neuron, vol.75, issue.4, 2012.
DOI : 10.1016/j.neuron.2012.08.001

URL : https://doi.org/10.1016/j.neuron.2012.08.001

E. Fino, J. Deniau, and L. Venance, Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices, The Journal of Physiology, vol.7, issue.Suppl., pp.265-282, 2008.
DOI : 10.1038/nrn1919

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2007.144501/pdf

E. Fino, J. Glowinski, and L. Venance, Bidirectional Activity-Dependent Plasticity at Corticostriatal Synapses, Journal of Neuroscience, vol.25, issue.49, pp.11279-11287, 2005.
DOI : 10.1523/JNEUROSCI.4476-05.2005

URL : http://www.jneurosci.org/content/jneuro/25/49/11279.full.pdf

E. Fino, V. Paille, Y. Cui, T. Morera-herreras, J. Deniau et al., Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity, The Journal of Physiology, vol.12, issue.16, pp.3045-3062, 2010.
DOI : 10.1038/nn.2261

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2010.188466/pdf

E. Fino, V. Paille, J. Deniau, and L. Venance, Asymmetric spiketiming dependent plasticity of striatal nitric oxide-synthase interneurons, Neuroscience, vol.160, 2009.
DOI : 10.1016/j.neuroscience.2009.03.015

S. D. Fisher, P. B. Robertson, M. J. Black, P. Redgrave, M. A. Sagar et al., Reinforcement determines the timing dependence of corticostriatal synaptic plasticity in vivo, Nature Communications, vol.286, issue.1, 2017.
DOI : 10.1074/jbc.M110.161489

P. Fossat, F. R. Turpin, S. Sacchi, J. Dulong, T. Shi et al., , 2011.

D. Glial, N. Gates-frémaux, and W. Gerstner, NMDA receptors at excitatory synapses in prefrontal cortex Neuromodulated spike-timing-dependent plasticity and theory of three-factor learning rules, Cereb. Cortex Front. Neural Circuits, vol.22, issue.9, pp.595-606, 2016.

R. C. Froemke, Plasticity of Cortical Excitatory-Inhibitory Balance, Annual Review of Neuroscience, vol.38, issue.1, pp.195-219, 2015.
DOI : 10.1146/annurev-neuro-071714-034002

R. C. Froemke, M. Poo, D. , Y. W. Lehmann, M. Liakoni et al., Spike-timing-dependent synaptic plasticity depends on dendritic location, Nature, vol.3, issue.7030, pp.221-225, 2005.
DOI : 10.1038/71125

M. Gilson and T. Fukai, Stability versus Neuronal Specialization for STDP: Long-Tail Weight Distributions Solve the Dilemma, PLoS ONE, vol.6, issue.10, 2011.
DOI : 10.1371/journal.pone.0025339.s007

J. Gjorgjieva, C. Clopath, J. Audet, and J. Pfister, A triplet spiketiming-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations, Proc. Natl. Acad. Sci. U S A, vol.108, 2011.

N. A. Goriounova and H. D. Mansvelder, Nicotine Exposure during Adolescence Leads to Short- and Long-Term Changes in Spike Timing-Dependent Plasticity in Rat Prefrontal Cortex, Journal of Neuroscience, vol.32, issue.31, pp.10484-10493, 2012.
DOI : 10.1523/JNEUROSCI.5502-11.2012

M. Graupner and N. Brunel, STDP in a bistable synapse model based on CaMKII and associated signaling pathways, PLoS Comput. Biol, 2007.

M. Graupner and N. Brunel, Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models, Frontiers in Computational Neuroscience, vol.4, 2010.
DOI : 10.3389/fncom.2010.00136

M. Graupner and N. Brunel, Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location, Proceedings of the National Academy of Sciences, vol.106, issue.31, pp.3991-3996, 2012.
DOI : 10.1073/pnas.0900546106

M. Graupner, P. Wallisch, and S. Ostojic, Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate, Journal of Neuroscience, vol.36, issue.44, pp.11238-11258, 2016.
DOI : 10.1523/JNEUROSCI.0104-16.2016

T. Griffith, J. Mellor, and K. Tsaneva-atanasova, Spike-timing dependent plasticity (STDP), biophysical models, Encyclopedia of Computational Neuroscience, pp.10-1007, 2015.

T. Griffith, K. Tsaneva-atanasova, and J. R. Mellor, Control of Ca 2+ influx and calmodulin activation by SK-channels in dendritic spines, PLoS Comput. Biol, 2016.

M. R. Groen, O. Paulsen, E. Pérez-garci, T. Nevian, J. Wortel et al., Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons, Journal of Neurophysiology, vol.22, issue.2, pp.287-299, 2014.
DOI : 10.1152/jn.00855.2003

Y. Guo, S. Huang, R. De-pasquale, K. Mcgehrin, H. Lee et al., Dark Exposure Extends the Integration Window for Spike-Timing-Dependent Plasticity, Journal of Neuroscience, vol.32, issue.43, pp.15027-15035, 2012.
DOI : 10.1523/JNEUROSCI.2545-12.2012

S. Haj-dahmane, J. C. Béïque, and R. Shen, GluA2-Lacking AMPA Receptors and Nitric Oxide Signaling Gate Spike-Timing???Dependent Potentiation of Glutamate Synapses in the Dorsal Raphe Nucleus, eneuro, vol.4, issue.3, pp.116-133, 2017.
DOI : 10.1523/ENEURO.0116-17.2017

V. Z. Han, K. Grant, and C. C. Bell, Reversible Associative Depression and Nonassociative Potentiation at a Parallel Fiber Synapse, Neuron, vol.27, issue.3, pp.611-622, 2000.
DOI : 10.1016/S0896-6273(00)00070-2

URL : https://hal.archives-ouvertes.fr/hal-00124918

N. Hardingham, J. Dachtler, and K. Fox, The role of nitric oxide in pre-synaptic plasticity and homeostasis, Frontiers in Cellular Neuroscience, vol.7, 2013.
DOI : 10.3389/fncel.2013.00190

N. Hardingham and K. Fox, The Role of Nitric Oxide and GluR1 in Presynaptic and Postsynaptic Components of Neocortical Potentiation, Journal of Neuroscience, vol.26, issue.28, 2006.
DOI : 10.1523/JNEUROSCI.0652-06.2006

, J. Neurosci, vol.26, pp.7395-7404, 2006.

K. He, M. Huertas, S. Z. Hong, X. Tie, J. W. Hell et al., Distinct Eligibility Traces for LTP and LTD in Cortical Synapses, Neuron, vol.88, issue.3, pp.528-538, 2015.
DOI : 10.1016/j.neuron.2015.09.037

C. Henneberger, T. Papouin, S. H. Oliet, R. , and D. A. , Long-term potentiation depends on release of d-serine from astrocytes, Nature, vol.28, issue.7278, pp.232-236, 1038.
DOI : 10.1038/nature08673

M. J. Higley and B. L. Sabatini, Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors, Nature Neuroscience, vol.2, issue.8, pp.958-966, 2010.
DOI : 10.1038/nn.2592

URL : http://europepmc.org/articles/pmc2910780?pdf=render

N. Hiratani and T. Fukai, Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity, The Journal of Neuroscience, vol.37, issue.50, pp.12106-12122, 2017.
DOI : 10.1523/JNEUROSCI.0027-17.2017

S. Huang, R. L. Huganir, and A. Kirkwood, Adrenergic Gating of Hebbian Spike-Timing-Dependent Plasticity in Cortical Interneurons, Journal of Neuroscience, vol.33, issue.32, pp.13171-13178, 2013.
DOI : 10.1523/JNEUROSCI.5741-12.2013

URL : http://www.jneurosci.org/content/jneuro/33/32/13171.full.pdf

Y. Y. Huang and E. R. Kandel, D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus., Proceedings of the National Academy of Sciences, vol.92, issue.7, pp.2446-2450, 1995.
DOI : 10.1073/pnas.92.7.2446

S. Huang, C. Rozas, M. Treviño, J. Contreras, S. Yang et al., , 2014.

, Associative Hebbian synaptic plasticity in primate visual cortex, J. Neurosci, vol.34, pp.7575-7579

Y. Humeau, H. Shaban, S. Bissière, A. Lüthi, F. M. Inglis et al., Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain doi: 10 Dopaminergic innervation of the amygdala is highly responsive to stress Solving the distal reward problem through linkage of STDP and dopamine signaling, Nature J. Neurochem. Cereb. Cortex, vol.426, issue.17, pp.841-845, 1038.

J. Je-?drzejewska-szmek, S. Damodaran, D. B. Dorman, and K. T. Blackwell, Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons, European Journal of Neuroscience, vol.12, issue.Suppl 1, pp.1044-1056, 2016.
DOI : 10.1038/nn.2261

C. K. Jones, N. Byun, and M. Bubser, Muscarinic and Nicotinic Acetylcholine Receptor Agonists and Allosteric Modulators for the Treatment of Schizophrenia, Neuropsychopharmacology, vol.22, issue.1, pp.16-42, 2012.
DOI : 10.1093/emboj/18.5.1235

R. Kempter, W. Gerstner, and J. L. Van-hemmen, How the threshold of a neuron determines its capacity for coincidence detection, Biosystems, vol.48, issue.1-3, pp.105-112, 1998.
DOI : 10.1016/S0303-2647(98)00055-0

T. Kenakin, C. , and A. , Signalling bias in new drug discovery: detection, quantification and therapeutic impact, Nature Reviews Drug Discovery, vol.81, issue.3, pp.205-216, 1038.
DOI : 10.1124/mol.111.074872

K. Herenbrink, C. Sykes, D. A. Donthamsetti, P. Canals, M. Coudrat et al., The role of kinetic context in apparent biased agonism at GPCRs Calcium dynamics in single spines during coincident pre-and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials, Proc. Natl. Acad. Sci. U S A 95, pp.9596-9601, 1998.

M. Korte and D. Schmitz, Cellular and System Biology of Memory: Timing, Molecules, and Beyond, Physiological Reviews, vol.22, issue.2, pp.647-693, 2016.
DOI : 10.1016/j.neuron.2008.10.054

A. Kumar and M. R. Mehta, Frequency-Dependent Changes in NMDAR-Dependent Synaptic Plasticity, Frontiers in Computational Neuroscience, vol.5, 2011.
DOI : 10.3389/fncom.2011.00038

?. Ku´smierzku´smierz, T. Isomura, and T. Toyoizumi, Learning with three factors: modulating Hebbian plasticity with errors, Curr. Opin. Neurobiol, vol.46, 2017.

T. N. Lerner, E. A. Horne, N. Stella, and A. C. Kreitzer, , 2010.

, J. Neurosci, vol.30, pp.2160-2164

F. Leroy, D. H. Brann, T. Meira, and S. A. Siegelbaum, Input-timingdependent plasticity in the hippocampal CA2 region and its potential role in social memory, Neuron, vol.95, 2017.

J. J. Letzkus, B. M. Kampa, and G. J. Stuart, Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location, Journal of Neuroscience, vol.26, issue.41, pp.10420-10429, 2006.
DOI : 10.1523/JNEUROSCI.2650-06.2006

Y. Lin, M. Min, T. Chiu, Y. , and H. , Enhancement of Associative Long-Term Potentiation by Activation of ??-Adrenergic Receptors at CA1 Synapses in Rat Hippocampal Slices, The Journal of Neuroscience, vol.23, issue.10, pp.4173-4181, 2003.
DOI : 10.1523/JNEUROSCI.23-10-04173.2003

J. Lisman, A. A. Grace, and E. Duzel, A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP, Trends in Neurosciences, vol.34, issue.10, pp.536-547, 2011.
DOI : 10.1016/j.tins.2011.07.006

J. Lu, C. Li, J. Zhao, M. Poo, and X. Zhang, Spike-Timing-Dependent Plasticity of Neocortical Excitatory Synapses on Inhibitory Interneurons Depends on Target Cell Type, Journal of Neuroscience, vol.27, issue.36, pp.9711-9720, 2007.
DOI : 10.1523/JNEUROSCI.2513-07.2007

H. Lu, H. Park, and M. Poo, Spike-timing-dependent BDNF secretion and synaptic plasticity, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.13, issue.4, 2014.
DOI : 10.1016/0896-6273(94)90256-9

S. Ma, B. Hangya, C. S. Leonard, W. Wisden, and A. L. Gundlach, , 2018.

, Dual-transmitter systems regulating arousal, attention, learning and memory, Neurosci. Biobehav. Rev, vol.85

J. C. Magee and D. Johnston, A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons, Science, vol.275, issue.5297, 1997.
DOI : 10.1126/science.275.5297.209

H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs, Science, vol.275, issue.5297, 1997.
DOI : 10.1126/science.275.5297.213

B. N. Mathur and D. M. Lovinger, Endocannabinoid???Dopamine Interactions in Striatal Synaptic Plasticity, Frontiers in Pharmacology, vol.3, 2012.
DOI : 10.3389/fphar.2012.00066

W. H. Mehaffey and A. J. Doupe, Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex, Nature Neuroscience, vol.20, issue.9, pp.1272-1280, 2015.
DOI : 10.1152/jn.00977.2009

S. Mihalas, Calcium Messenger Heterogeneity: A Possible Signal for Spike Timing-Dependent Plasticity, Frontiers in Computational Neuroscience, vol.4, 2011.
DOI : 10.3389/fncom.2010.00158

R. Min and T. Nevian, Astrocyte signaling controls spike timing???dependent depression at neocortical synapses, Nature Neuroscience, vol.15, issue.5, pp.746-753, 2012.
DOI : 10.1038/nmeth989

R. K. Mishra, S. Kim, S. J. Guzman, J. , and P. , Symmetric spike timingdependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks Phenomenological models of synaptic plasticity based on spike timing, Nat. Commun. Biol. Cybern, vol.98, pp.459-478, 2008.

Y. Mu and M. Poo, Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System, Neuron, vol.50, issue.1, 2006.
DOI : 10.1016/j.neuron.2006.03.009

T. Nakano, J. Yoshimoto, and K. Doya, A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes, Frontiers in Computational Neuroscience, vol.7, 2013.
DOI : 10.3389/fncom.2013.00119

K. A. Neve, J. K. Seamans, and H. Trantham-davidson, Dopamine Receptor Signaling, Journal of Receptors and Signal Transduction, vol.275, issue.309, pp.165-205, 2004.
DOI : 10.1074/jbc.C000592200

T. Nevian and B. Sakmann, Spine Ca 2+ signaling in spike-timingdependent plasticity, J. Neurosci, vol.26, 2006.

M. Nishiyama, K. Hong, K. Mikoshiba, M. Poo, and K. Kato, Calcium stores regulate the polarity and input specificity of synaptic modification, Nature, vol.408, pp.584-588, 1038.

M. Nishiyama, K. Togashi, T. Aihara, H. , and K. , GABAergic activities control spike timing-and frequency-dependent long-term depression at hippocampal excitatory synapses. Front, 2010.

J. F. Oliveira, V. M. Sardinha, S. Guerra-gomes, A. Araque, and N. Sousa, Do stars govern our actions? Astrocyte involvement in rodent behavior, Trends in Neurosciences, vol.38, issue.9, pp.535-549, 2015.
DOI : 10.1016/j.tins.2015.07.006

V. Paille, E. Fino, K. Du, T. Morera-herreras, S. Perez et al., GABAergic Circuits Control Spike-Timing-Dependent Plasticity, Journal of Neuroscience, vol.33, issue.22, pp.9353-9363, 2013.
DOI : 10.1523/JNEUROSCI.5796-12.2013

A. Panatier, D. T. Theodosis, J. Mothet, B. Touquet, L. Pollegioni et al., Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory, Cell, vol.125, issue.4, pp.775-784, 2006.
DOI : 10.1016/j.cell.2006.02.051

URL : https://hal.archives-ouvertes.fr/inserm-00078312

H. Park and M. Poo, Neurotrophin regulation of neural circuit development and function, Nature Reviews Neuroscience, vol.24, issue.1, pp.7-23, 2013.
DOI : 10.1523/JNEUROSCI.1427-04.2004

O. Pascual, K. B. Casper, C. Kubera, J. Zhang, R. Revilla-sanchez et al., Astrocytic Purinergic Signaling Coordinates Synaptic Networks, Science, vol.310, issue.5745, pp.113-116, 2005.
DOI : 10.1126/science.1116916

S. S. Pattwell, K. G. Bath, R. Perez-castro, F. S. Lee, M. V. Chao et al., The BDNF Val66Met Polymorphism Impairs Synaptic Transmission and Plasticity in the Infralimbic Medial Prefrontal Cortex, Journal of Neuroscience, vol.32, issue.7, pp.2410-2421, 2012.
DOI : 10.1523/JNEUROSCI.5205-11.2012

V. Pawlak and J. N. Kerr, Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity, Journal of Neuroscience, vol.28, issue.10, pp.2435-2446, 2008.
DOI : 10.1523/JNEUROSCI.4402-07.2008

V. Pawlak, J. R. Wickens, A. Kirkwood, and J. N. Kerr, Timing is not everything: neuromodulation opens the STDP gate, Frontiers in Synaptic Neuroscience, vol.2, 2010.
DOI : 10.3389/fnsyn.2010.00146

H. J. Pi and J. E. Lisman, Coupled Phosphatase and Kinase Switches Produce the Tristability Required for Long-Term Potentiation and Long-Term Depression, Journal of Neuroscience, vol.28, issue.49, pp.13132-13138, 2008.
DOI : 10.1523/JNEUROSCI.2348-08.2008

J. L. Plotkin, W. Shen, I. Rafalovich, L. E. Sebel, M. Day et al., Regulation of dendritic calcium release in striatal spiny projection neurons, Journal of Neurophysiology, vol.16, issue.10, pp.2325-2336, 2013.
DOI : 10.1210/me.2004-0044

P. Poirazi, T. Brannon, M. , and B. W. , Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell, Proc. Natl. Acad. Sci. U S A, pp.977-987, 2003.
DOI : 10.1016/S0896-6273(03)00148-X

B. P. Ramos and A. F. Arnsten, Adrenergic pharmacology and cognition: Focus on the prefrontal cortex, Pharmacology & Therapeutics, vol.113, issue.3, pp.523-536, 2007.
DOI : 10.1016/j.pharmthera.2006.11.006

N. Rebola, M. Carta, F. Lanore, C. Blanchet, and C. Mulle, NMDA receptor???dependent metaplasticity at hippocampal mossy fiber synapses, Nature Neuroscience, vol.14, issue.6, pp.691-693, 2011.
DOI : 10.1523/JNEUROSCI.4194-05.2006

A. Rodríguez-moreno and O. Paulsen, Spike timing???dependent long-term depression requires presynaptic NMDA receptors, Nature Neuroscience, vol.18, issue.7, pp.744-745, 2008.
DOI : 10.1523/JNEUROSCI.3915-07.2008

H. Ruan, T. Saur, and W. Yao, Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry, Frontiers in Neural Circuits, vol.47, issue.146, 2014.
DOI : 10.1016/j.neuron.2005.08.014

J. E. Rubin, R. C. Gerkin, G. Bi, and C. C. Chow, Calcium Time Course as a Signal for Spike-Timing???Dependent Plasticity, Journal of Neurophysiology, vol.93, issue.5, pp.2600-2613, 2004.
DOI : 10.1038/25665

P. Safo and W. G. Regehr, Timing dependence of the induction of cerebellar LTD, Neuropharmacology, vol.54, issue.1, pp.213-218, 2008.
DOI : 10.1016/j.neuropharm.2007.05.029

D. A. Sahlender, I. Savtchouk, and A. Volterra, What do we know about gliotransmitter release from astrocytes? Philos, Trans. R. Soc. Lond. B Biol. Sci, 2014.

K. Sakata, N. H. Woo, K. Martinowich, J. S. Greene, R. J. Schloesser et al., Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex, Proceedings of the National Academy of Sciences, vol.23, issue.35, pp.5942-5947, 2009.
DOI : 10.1523/JNEUROSCI.3345-06.2007

H. Salgado, G. Köhr, and M. Treviño, Noradrenergic ???Tone??? Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity, Scientific Reports, vol.131, issue.1, 2012.
DOI : 10.1016/j.cell.2007.09.017

A. Saudargiene, G. , and B. P. , Inhibitory control of site-specific synaptic plasticity in a model CA1 pyramidal neuron, Biosystems, vol.130, 2015.
DOI : 10.1016/j.biosystems.2015.03.001

W. Schultz, Behavioral dopamine signals, Trends in Neurosciences, vol.30, issue.5, 2007.
DOI : 10.1016/j.tins.2007.03.007

J. M. Schulz, P. Redgrave, R. , and J. N. , Cortico-striatal spiketiming dependent plasticity after activation of subcortical pathways. Front, 2010.
DOI : 10.3389/fnsyn.2010.00023

URL : https://www.frontiersin.org/articles/10.3389/fnsyn.2010.00023/pdf

A. Scimemi, Structure, function, and plasticity of GABA transporters, Frontiers in Cellular Neuroscience, vol.280, issue.188, 2014.
DOI : 10.1074/jbc.M412937200

URL : http://journal.frontiersin.org/article/10.3389/fncel.2014.00161/pdf

G. H. Seol, J. Ziburkus, S. Huang, L. Song, I. T. Kim et al., Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity, Neuron, vol.55, issue.6, pp.919-929, 2007.
DOI : 10.1016/j.neuron.2007.08.013

URL : https://doi.org/10.1016/j.neuron.2007.11.007

W. Shen, M. Flajolet, P. Greengard, and D. J. Surmeier, Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity, Science, vol.25, issue.10, pp.848-851, 2008.
DOI : 10.1016/S0166-2236(02)02235-X

URL : http://europepmc.org/articles/pmc2833421?pdf=render

Y. Shim, A. Philippides, K. Staras, and P. Husbands, Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP, PLOS Computational Biology, vol.23, issue.5297, 2016.
DOI : 10.1371/journal.pcbi.1005137.s001

URL : http://doi.org/10.1371/journal.pcbi.1005137

T. Shindou, M. Shindou, S. Watanabe, and J. Wickens, A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum, European Journal of Neuroscience, vol.345, issue.Pt 2, 2018.
DOI : 10.1126/science.1255514

H. Z. Shouval, M. F. Bear, C. , and L. N. , A unified model of NMDA receptor-dependent bidirectional synaptic plasticity, Proceedings of the National Academy of Sciences, vol.13, issue.4-5, pp.10831-10836, 2002.
DOI : 10.1016/S0893-6080(00)00028-9

URL : http://www.pnas.org/content/99/16/10831.full.pdf

H. Z. Shouval and G. Kalantzis, Stochastic Properties of Synaptic Transmission Affect the Shape of Spike Time???Dependent Plasticity Curves, Journal of Neurophysiology, vol.93, issue.2, 2005.
DOI : 10.1038/25665

, J. Neurophysiol, vol.93, pp.1069-1073, 2004.

P. J. Sjöström, E. A. Rancz, A. Roth, and M. Häusser, Dendritic Excitability and Synaptic Plasticity, Physiological Reviews, vol.88, issue.2, pp.769-840, 2007.
DOI : 10.1038/20200

P. J. Sjöström, G. G. Turrigiano, N. , and S. B. , Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity, Neuron, vol.32, issue.6, pp.1149-1164, 2001.
DOI : 10.1016/S0896-6273(01)00542-6

P. J. Sjöström, G. G. Turrigiano, N. , and S. B. , Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors, Neuron, vol.39, issue.4, pp.641-654, 2003.
DOI : 10.1016/S0896-6273(03)00476-8

D. Standage, T. Trappenberg, and G. Blohm, Calcium-Dependent Calcium Decay Explains STDP in a Dynamic Model of Hippocampal Synapses, PLoS ONE, vol.12, issue.1, 2014.
DOI : 10.1371/journal.pone.0086248.t001

E. Sugisaki, Y. Fukushima, S. Fujii, Y. Yamazaki, and T. Aihara, The effect of coactivation of muscarinic and nicotinic acetylcholine receptors on LTD in the hippocampal CA1 network, Brain Research, vol.1649, pp.44-52, 2016.
DOI : 10.1016/j.brainres.2016.08.024

E. Sugisaki, Y. Fukushima, M. Tsukada, and T. Aihara, Cholinergic modulation on spike timing-dependent plasticity in hippocampal CA1 network, Neuroscience, vol.192, 2011.
DOI : 10.1016/j.neuroscience.2011.06.064

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

P. Takkala and M. A. Woodin, Muscarinic acetylcholine receptor activation prevents disinhibition-mediated LTP in the hippocampus, Frontiers in Cellular Neuroscience, vol.7, 2013.
DOI : 10.3389/fncel.2013.00016

A. Thiele, Muscarinic Signaling in the Brain, Annual Review of Neuroscience, vol.36, issue.1, pp.271-294, 2013.
DOI : 10.1146/annurev-neuro-062012-170433

T. Tzounopoulos, Y. Kim, D. Oertel, L. O. Trussell, M. Honda et al., Cell-specific, spike timing???dependent plasticities in the dorsal cochlear nucleus, Nature Neuroscience, vol.91, issue.7, pp.719-725, 2004.
DOI : 10.1152/jn.00900.2003

S. Valtcheva, V. Paillé, Y. Dembitskaya, S. Perez, G. Gangarossa et al., Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum, Neuropharmacology, vol.121, pp.261-277, 2017.
DOI : 10.1016/j.neuropharm.2017.04.012

S. Valtcheva and L. Venance, Astrocytes gate Hebbian synaptic plasticity in the striatum, Nature Communications, vol.2014, 2016.
DOI : 10.1155/2014/232105

URL : https://hal.archives-ouvertes.fr/hal-01429821

, Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion, EMBO J, vol.35, pp.239-257

S. H. Wang, R. L. Redondo, M. , and R. G. , Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory, Proceedings of the National Academy of Sciences, vol.27, issue.47, 2010.
DOI : 10.1523/JNEUROSCI.4093-07.2007

S. R. Williams, C. Wozny, M. , and S. J. , The Back and Forth of Dendritic Plasticity, Neuron, vol.56, issue.6, 2007.
DOI : 10.1016/j.neuron.2007.12.004

G. M. Wittenberg, W. , S. S. , and -. , Malleability of Spike-Timing-Dependent Plasticity at the CA3-CA1 Synapse, Journal of Neuroscience, vol.26, issue.24, pp.6610-6617, 2006.
DOI : 10.1523/JNEUROSCI.5388-05.2006

M. A. Woodin, K. Ganguly, and M. Poo, Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl??? Transporter Activity, Neuron, vol.39, issue.5, pp.807-820, 2003.
DOI : 10.1016/S0896-6273(03)00507-5

URL : https://doi.org/10.1016/s0896-6273(03)00507-5

T. Xu and W. Yao, D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex, Proceedings of the National Academy of Sciences, vol.13, issue.6, pp.16366-16371, 2010.
DOI : 10.1146/annurev.ne.15.030192.001441

S. Yagishita, A. Hayashi-takagi, G. C. Ellis-davies, H. Urakubo, S. Ishii et al., A critical time window for dopamine actions on the structural plasticity of dendritic spines, Science, vol.492, issue.7419, pp.1616-1620, 2014.
DOI : 10.1038/nature11601

K. Yang, D. , and J. A. , Dopamine D1 and D5 Receptors Modulate Spike Timing-Dependent Plasticity at Medial Perforant Path to Dentate Granule Cell Synapses, Journal of Neuroscience, vol.34, issue.48, pp.15888-15897, 2014.
DOI : 10.1523/JNEUROSCI.2400-14.2014

URL : http://www.jneurosci.org/content/34/48/15888.full.pdf

H. H. Yin and B. J. Knowlton, The role of the basal ganglia in habit formation, Nature Reviews Neuroscience, vol.9, issue.6, pp.464-476, 1919.
DOI : 10.1037/0735-7044.114.2.295

Z. Zhang, N. Gong, W. Wang, L. Xu, and T. Xu, Bell-Shaped D-Serine Actions on Hippocampal Long-Term Depression and Spatial Memory Retrieval, Cerebral Cortex, vol.33, issue.3, pp.2391-2401, 2008.
DOI : 10.1038/sj.npp.1301449

URL : https://academic.oup.com/cercor/article-pdf/18/10/2391/1095688/bhn008.pdf

J. Zhang, P. Lau, and G. Bi, Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses, Proceedings of the National Academy of Sciences, vol.2, issue.10, pp.13028-13033, 2009.
DOI : 10.1038/35094560

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

©. Copyright, . Foncelle, J. Mendes, . ?drzejewska-szmek, . Valtcheva et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2018.