Iterative selection methods for common fixed point problems

Sever Adrian Hirstoaga 1
1 TONUS - TOkamaks and NUmerical Simulations
IRMA - Institut de Recherche Mathématique Avancée, Inria Nancy - Grand Est
Abstract : Many problems encountered in applied mathematics can be recast as the problem of selecting a particular common fixed point of a countable family of quasi-nonexpansive operators in a Hilbert space. We propose two iterative methods to solve such problems. Our convergence analysis is shown to cover a variety of existing results in this area. Applications to solving monotone inclusion and equilibrium problems are considered.
Type de document :
Article dans une revue
Journal of Mathematical Analysis and Applications, Elsevier, 2006, 324 (2), pp.1020-1035. 〈10.1016/j.jmaa.2005.12.064〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01811186
Contributeur : S. A. Hirstoaga <>
Soumis le : vendredi 8 juin 2018 - 16:10:08
Dernière modification le : vendredi 15 juin 2018 - 10:25:51

Lien texte intégral

Identifiants

Collections

Citation

Sever Adrian Hirstoaga. Iterative selection methods for common fixed point problems. Journal of Mathematical Analysis and Applications, Elsevier, 2006, 324 (2), pp.1020-1035. 〈10.1016/j.jmaa.2005.12.064〉. 〈hal-01811186〉

Partager

Métriques

Consultations de la notice

99