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Abstract

We give a brief account of the main findings of our
post-hoc analysis of the first AutoML challenge (2015-
2016). This competition, which took place in 2015-
2016 challenged the participants to submit code that
solve classification and regression problems from fixed-
length feature representations, without any human in-
tervention. This paper is a digest of a book chap-
ter to be published in the Springer Series on Chal-
lenges in Machine Learning [ ]. All datasets, code
of the winners, and challenge results are found at:
http://automl.chalearn.org.

Keywords: Automatic ML, meta learning, trans-
fer learning, Bayesian optimization

1 Background

Machine Learning has achieved considerable successes
in recent years and an ever-growing number of disci-
plines rely on it. However, this success crucially re-
lies on human intervention in many steps (data pre-
processing, feature engineering, model selection, hy-
perparameter optimization, etc.). As the complexity
of these tasks is often beyond non-experts, the rapid
growth of machine learning applications has created
a demand for off-the-shelf or reusable methods, which
can be used easily and without expert knowledge. The
objective of AutoML (Automatic Machine Learning)
challenges is to push research towards creating “univer-
sal learning machines” capable of learning and making
predictions without human intervention. This means
that the participants must deliver code, which is blind
tested on datasets never released before.

The overall AutoML problem covers a wide range
of difficulties, which cannot be addressed all at once
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in a single challenge. To name only a few: data
“ingestion” and formatting, pre-processing and fea-
ture/representation learning, detection and handling
of skewed/biased data, inhomogeneous, drifting, mul-
timodal, or multi-view data (hinging on transfer learn-
ing), matching algorithms to problems (which may in-
clude supervised, unsupervised, or reinforcement learn-
ing, or other settings), acquisition of new data (ac-
tive learning, query learning, reinforcement learning,
causal experimentation), management of large volumes
of data including the creation of appropriately sized
and stratified training, validation, and test sets!, selec-
tion of algorithms that satisfy arbitrary resource con-
straints at training and run time, the ability to gen-
erate and reuse workflows, and generating explicative
reports.

Therefore, restricting the scope of a particular chal-
lenge is of great importance to ensure that the field
progresses swiftly and intermediate milestones of im-
mediate practical interest are reached. Our first chal-
lenge was limited to:

e Supervised learning problems (classification
and regression).
e Feature vector representations.

e Homogeneous datasets (same distribution in
the training, validation, and test set).

e Medium size datasets of less than 200 MBytes.

e Limited computer resources with an execution
times of less than 20 minutes per dataset on an 8
core £86_64 machine with 56 GB RAM.

Within this constrained setting, the testbed was com-
posed of 30 datasets from a wide variety of application
domains (medical diagnosis, speech recognition, credit

In AutoML, the test sets were designed to be large enough
such that the performance of participants are well separated,
please refer to the appendix of | ] for the error bars of win-
ners’ performance.
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rating, prediction of drug toxicity/efficacy, classifica-
tion of text, prediction of customer satisfaction, object
recognition, protein structure prediction, action recog-
nition in video data) and ranged across different types
of complexity (class imbalance, sparsity, missing val-
ues, categorical variables). In this limited framework,
there remain many modeling choices.

Many robust learning machines with a reduced
number of hyper-parameters have emerged in the re-
cent years in an effort to produce perfect black-bozes
to perform tasks such as classification and regres-
sion | , |. But the availability of toolboxes
rich in such models, e.g. Weka | ] or scikit-
learn | ], has not eliminated modeling choices.
Similarly to AI, which has endeavored to pass the Tur-
ing test, ML has undertaken the task of beating the
“no free lunch theorem”, stating that no model can be
superior to all others on every task. Tools like AUTO-
SKLEARN | , , ]?, a wrapper
around the scikit-learn library built by the winners of
the AutoML challenge have made big strides towards
that goal. The objective of this paper is to summarize
where we are in this race. More details can be found
in our full report [ ]

2 The AutoML setting

For the purpose of this paper, a predictive model (or
model for short) has the form y = f(x) = f(x;a)
with a set of parameters o = [040, a1, Q9, ..., an] train-
able with a learning algorithm (trainer). The trained
model (predictor) y = f(x) produced by the trainer is
evaluated by an objective function J(f), used to assess
the model performance on test data.

A model hypothesis space defined by a vector 8 =
[01, 62, ...,0,] of hyper-parameters, which may include
both categorical variables corresponding to switching
between alternative models and other modeling choices
such as preprocessing parameters, type of kernel in a
kernel method, number of units and layers in a neural
network, or training algorithm regularization parame-
ters | ]. Some authors refer to this problem as full
model selection | , ], others as the CASH
problem (Combined Algorithm Selection and Hyperpa-
rameter optimization) | ]

We will then denote hyper-models as

y = f(x;0) = f(x;(0),8), (1)

where the model parameter vector a is an implicit
function of the hyper-parameter vector 8 obtained by

2https://automl.github.io/auto-sklearn/stable/

using a trainer for a fixed value of @, and training data
composed of input-output pairs (x;,y;).

The goal of the challenge participants is to devise
algorithms capable of training the hyper-parameters 6.

3 Statistical complexity
computational complexity

vs.

The dilemma of model selection is to avoid “search-
ing too hard” (and falling in the trap of over-fitting)
and “not searching hard enough” (and falling in the
trap of under-fitting). One often refers to as statisti-
cal complexity all ailments related to the “curse of
dimensionality” or solving ill-posed problems, in which
not enough training data is available to ensure good
generalization. Another notion of complexity, comple-
menting the first one, is computational complexity:
exploring exhausively (or very intensively) a very large
model space by evaluating “all” (or very many) models
is generally infeasible because of the combinatorial na-
ture of the problem of probing simultaneouly several
hyper-parameters. Success in the AutoML challenge
depends on addessing both types of complexity.

Best practices for model selection converge towards
the Ockham’s razor principle, which prescribes limit-
ing model complexity to the minimum necessary to
explain the data, or shave off unnecessary parame-
ters. This has been grounded in theory over the
past few years in such frameworks as regularization,
Bayesian priors, Minimum Description Length, Struc-
tural Risk Minimization (SRM), and the bias/variance
tradeoff | , , , , ]. With
modern learning machines designed to regularize and
prevent overfitting, good practitioners usually do not
over-train their models. Indeed, in the challenge, our
analyses revealed no over-fitting of models. Two means
of combatting over-fitting are pervasive: using cost
functions penalizing model complexity and en-
sembling. The latter has been adopted by all winners,
see Section 6.

The most pressing problem in today’s AutoML re-
search is therefore that of under-fitting, which cannot
be solved by brute-force search if computational re-
sources are limited. In the next section, we review
what “clever search” entails in today’s state-of-the art.
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Figure 1: Learning Curve of ‘aad_freiburg’ (yellow)
and ‘abhishek’ (blue) for the evita dataset. Abhishek
starts with a better solution but performs a less efficient ex-
ploration. In contrast, aad_freiburg starts lower but ends up
with a better solution. In green: the ‘aad_freiburg’ learning
curve keeps improving beyond the time limit imposed in the
challenge (20 min).

4 Heuristic search vs. Bayesian
optimization

Model search (including hyper-parameter search,
jointly referred to as HP search) involves two neces-
sary components: (1) a means of estimating the per-
formance of the model on future data (estimator), and
(2) a strategy for exploring the search space (policy).
For problem 1, there is presently a large consen-
sus for the choice of estimators. Obviously, when vast
amounts of training data are available, reserving a sin-
gle subset of the training data for validation is simple
and efficient. Otherwise, common practice is to use
some form of cross-validation (CV). K-fold CV and
its variants are a favorite, in front of bootstrapping
(e.g., bagging used in Random Forests). For K, most
people use K=10, although there is no clear theoreti-
cal foundation for this choice. It has been known for
decades that a special kind of CV estimator, the leave-
one-out estimator, can be efficiently approximated
by training a single model (e.g., virtual-leave-one-out
[GGNZ06]). Yet such methods are not applicable to
all algorithms and require dedicated code, so they are
not popular amongst practitionners, which prefer using
plain CV in a wrapper setting. Likewise, techniques of
bilevel optimization, optimizing simultaneously param-
eters and hyper-parameters (e.g., [BICII08, MBB11])
have not gained in popularity for the same reason.
Problem 2 is presently the main focus in Au-
toML research: develop efficient search policies.
The ‘aad_freiburg’ team (who developped AUTO-
SKLEARN [FKET15b, FKE'15a, FSH15] and dom-
inated both the 2015-2016 AutoML challenge and its
2018 sequel) used a method inspired by Bayesian op-
timization [EF'H713]. The key idea is to guide the

search with a “cheap” evaluation of models. CV is
thus used to evaluate only a few candidate points in
HP space. A predictor of model performance in HP
space is built with a form of active learning. Ran-
dom Forest (RF) regressors lend themselves particu-
larly well to this exercise and have superseded Gaus-
sian processes [[IIMR]. One reason is that they are
based on decision trees, which are hierarchical in na-
ture, thus making it easy to map a hierarchy of hyper-
parameters. Another reason is that, as an ensemble
method, RF yields also an estimator of the variance
of the predictions. Armed with an estimation of the
expectation and the variance of the model to be evalu-
ated, Bayesian optimization methods estimate the ex-
pected benefit of effectively training and testing a new
model. Typically, this is a function expressing the ex-
ploration/exploitation tradeoff, i.e., you want to ex-
plore regions of high variance (where your predictions
are least confident) but not waste too much time ex-
ploring if there are low hanging fruits (models with
good performances candidates for winning).

Another form of Bayesian optimization, which was
very strong in the first AutoML challenge, is “freeze-
thaw” (introduced by J. Lloyd in the first phases whose
code was overtaken by S. Sun, placing 3rd in the final
phase) [Llol16]. Other top ranking participants used
various forms of heuristic search with performances
that ended up nearly as good. It is difficult to tell
apart at this stage the influence of various factors in
the success of methods. Initialization played an impor-
tant role. We show a typical example of learning curve
in Figure 1. Given enough time, the Bayesian opti-
mization method (‘aad_freiburg’) ends up with better
performance, but Abhishek has a better initialization.

The strongest contender to such “clever search”
methods is plain grid search applied to models having
only very few hyper-parameters. Grid search applied
to gradient tree boosting is a typical illustration of such
approach, which has been very successful in challenges,
since at least 2006 [Lut06]. The Intel team produced
very good results with such methods in the AutoML
challenge.

Finally, search free methods are worth mention-
ning. Marc Boullé applied the Selective Naive Bayes
(SNB) [Bou07, Bou09] extending the Naive Bayes
method for classification and regression. His software
developed by Orange Labs and in use in production,
was used in the challenge with minimal adaptation to
make it compliant to the challenge settings. Without
any further tuning, it returned a solution with honor-
able results, within the time limit of the challenge. It
is therefore a very strong baseline.



5 Meta Learning

Meta-learning aims at defining some general princi-
ples over different datasets®. The ‘aad_freiburg’ team
investigated meta-learning applied to the initializa-
tion of Bayesian search. Specifically, they consid-
ered 140 datasets from openml.org| ] (a plat-
form which allows to systematically run algorithms on
datasets) and they defined meta-features of datasets,
including simple statistics characterizing input and
output space, and the performance of a few landmark
algorithms such as one nearest neighbor (1NN) and de-
cision tree. They also ran AUTO-SKLEARN on these
datasets and recorded the best performing algorithm
for each dataset. Given a new dataset, and considering
its neighbors in terms of meta-features, they can then
initialize the HP search for the new dataset with the
algorithms performing best on its neighbors, resulting
in significant improvements compared to random ini-
tialization of the HP search.

To further understand the success of this method,
we investigated which meta-features are most predic-
tive of the best performing models. To that end we
performed the following experiment using scikit-learn.
We excluded landmark models from the set of meta-
features and built a linear discriminant classifier (LDA)
to predict which of four basic models would perform
best on the 30 datasets of the challenge, thus defining
a 4-class classification problem. Basic models included
Naive Bayes (NB), Stochastic Gradient Descent linear
model (SGD-linear), K=Nearest neighbor (KNN), and
Random Forest (RF), with default hyper-parameter
settings. The results shown in Figure 2 reveal three
clusters in the space of the two first LDA components.
Further, the features that contribute most to the first
two LDA components are the fraction of missing values
and features characterizing the distribution of target
values.*

3Meta-learning differs from transfer learning, which is con-
cerned with transferring models/knowledge among tasks. Trans-
fer learning can take various forms depending on the type of in-
formation that overlaps between tasks | ], i.e., similarity of
input space distribution and/or similarity of outputs/labels. In
the AutoML challenge framework however, the diversity among
the application domains and types of learning difficulties hinders
transfer learning, that will not be considered further in the pa-
per. Actually, the help of using transfer learning in such compe-
tition is an open question. We have seen in other past challenges
lending themselves to transfer learning that most (if not all) the
participants did not do any transfer learning, even through on
the long run transfer learning proved to be useful. The main
problem may be that challenges are time constrained and trans-
fer learning pays off only if you do it right and have enough
time.

4Given the small size of available datasets (only 30 datasets
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Figure 2: Linear Discriminant Analysis. (a)We

trained LDA wusing (X=meta features, except landmarks;
y=which model won of four basic models (NB, SGD-linear,
KNN, RF). The models were trained with default hyper
parameters. In the space of the two first LDA compo-
nents, each point represents one dataset. The colors code
for the winning basic models. The color transparency re-
flects the scores of the corresponding winning model (better
is darker).

Although the ‘aad_freiburg’ team showed in their
2015 paper | ] that this initialization faired
better than random initialization, there is still room
for improvement. Indeed, learning curves of the first
AutoML (of which an example is shown in Figure 1)
have revealed that other competitors had far better
initializations.

For the 2018 edition of the AutoML challenge, the
‘aad_freiburg’ team introduced a novel strategy: Port-
folio Successive Halving-AUTO-SKLEARN. As a form
of meta-learning, they created a fixed portfolio of ma-
chine learning pipelines using over 400 datasets. At
each period, the less successful pipelines (as estimated
from the Bayesian optimization model), are discarded
along the so-called Bayesian Optimization HyperBand
(BO-HB) [FKI117, )

6 Towards AutoML: engineering
vs. principles

Overall, we can ask ourselves whether the AutoML
challenge helped pushing “the science of AutoML”

in total), the LDA is trained on all datasets, and the model has
no generality.



and whether some design guidelines have emerged and
whether the “no free lunch” theorem has been beaten.

One thing is sure: ensembling always helps®, whether
you choose a homogeneous ensemble like Random
Forests or a heterogeneous ensemble, built e.g., with
the method of | ]. Other design choices re-
garding meta-learning and search are still evolving.
However, what drives most progress in the field is the
emergence of simple new concepts that researchers can
share and re-implement to reproduce results. In that
respect, Bayesian optimization has been helpful.

To reproduce the results of the challenge, there is one
good news and one bad news. The good news is that all
the code is open-sourced®. The bad news is that if you
want to write your own code based on e.g., scikit-learn
and the principles outlined in this paper, it will be a
significant amount of engineering. First, most methods
of scikit-learn will die on you for many datasets (out-
of-memory or out-of-time). Second, there are a lot of
tricks of the trade to perform meta-learning and get
Bayesian optimisation to work.

So it may be far easier to create your own code from
scratch and create your own “universal approximator”
with a handful of hyper-parameters tunable with grid
search. But be careful, many other people have tried;
scikit-learn is full of such models. Figure 3 shows the
performance of “pure models” wvs. the performances of
the challenge winners. They are lagging behind. It is
not so easy to beat the “no free lunch” theorem.

Other engineering aspects play an important role.
In the third round of the challenge when large sparse
datasets were introduced, the vast majority of meth-
ods failed blind testing by either running out of time
or out of memory. Ironically, the winners won thanks
to proper exception handling (they returned random
results rather than failing). During the “tweakathon”
phase that followed blind testing the participants had
an opportunity to fix their code. This revealed that the
tasks of round 3 were not particularly difficult, once en-
gineering problems were dealt with.

You may also be tempted to go beyond Bayesian
optimization in the line of research pursuing hetero-
geneous model search, by performing better meta-
learning or even by learning policies with reinforce-
ment learning. Some ideas along these lines have been
proposed in the literature | , ] and for
the first time in 2018, one of the top participants
(wiWangl) used Q-Learning to learn machine learning
pipelines.

5This phenomenon has also been observed heavily in Kaggle
competitions| ], please refer to our overview in appendix 1.
Shttp://automl.chalearn.org
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Figure 8: Comparison of methods (2015-2016 chal-
lenge) including basic methods (-def suffix), ba-
sic methods with optimised HP (-auto suffix), and
challenge winners. Winners in general win over ba-
stc methods, even with optimized HPs. There is no basic
method that dominates all others. Though RF-auto (Ran-
dom Forest with optimised HP) is very strong, it is often
outperformed by other methods and sometimes by RF-def
(Random Forest with default HP). Thus, under the tight
computational constraints of the challenge, optimizing HP
does not always pay. For KNN though, time permitting,
optimizing HP generally helps by a long shot. Interest-
ingly, KNN wins, even over the challenge winners, on some
datasets.

You may be tempted to use neural networks or deep
learning. Unfortunately, for such time constrained
challenge, even with GPUs (we provided GPUs in
round 4 of the first AutoML challenge), they are not
among the best performing methods.

In conclusion, it is fair to say that the winners pro-
vided a well engineered solution satisfying the con-
straint of the challenge in terms of time budget and
robustness to algorithm failures, but for any new pro-
posed task, manually selected and fined tuned algo-
rithms may still perform better.

7 Discussion: challenge and

benchmark design

The diversity of the 30 datasets of our first AutoML
challenge was both a feature and a curse: it allowed
us to test the robustness of software across a variety of
situations, but made meta-learning difficult (datasets
being different with respect to meta-features). Like-
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wise, we attached different metrics (loss functions) to
each dataset. This contributed to making the tasks
more realistic and more difficult, but also made meta-
learning harder. Consequently external datasets must
be used if meta-learning is to be explored for the Au-
toML challenge tasks. As previously mentioned, this
was the strategy adopted by the AAD Freiburg team,
which used the OpenML data for meta training. They
used over 400 datasets for meta-learning in last chal-
lenge edition.

With respect to task design, we learned that the
devil is in the details. Challenge participants generally
solve exactly the task proposed by the organizers, to
the point that their solution may not be adaptable to
seemingly similar scenarios. In the case of the AutoML
challenge, we pondered whether the metric of the chal-
lenge should be the area under the learning curve (plot-
ting performance as a function of time) or one point
on the learning curve (the performance obtained af-
ter a fixed maximum computational time elapsed). We
ended up favoring the second solution for practical rea-
sons. Examining after the challenge the learning curves
of some participants, it is quite clear that the two prob-
lems are radically different, particularly with respect
to strategies mitigating “exploration” and “exploita-
tion”. This prompted us to think about the differences
between “fixed time” learning (the participants know
in advance the time limit and are judged only on the
solution delivered at the end of that time) and “any
time learning” (the participants can be stopped at any
time and asked to return a solution). Both scenar-
ios are useful: the first one is practical when models
must be delivered continuously at a rapid pace, e.g.
for marketing applications; the second one is practical
in environments when computational resources are un-
reliable and interruption may be expected (e.g. people
working remotely via an unreliable connection). This
will influence the design of future challenges.

Also regarding task design, both AutoML challenges
differ in the sequence of difficulties tackled in each
round. In the 2015/2016 challenge, round 0 intro-
duced five datasets representing a sample of all types
of data and difficulties (types of targets, sparse data
or not, missing data or not, categorical variables of
not, more examples than features or not). Then each
round ramped up difficulty introducing each time 5 new
datasets. But in fact the datasets of round 0 were rel-
atively easy. Then during each round, the code of the
participants was blind tested on data that were one
notch harder than in the previous round. Hence trans-
fer was quite hard. In the 2018 challenge, we had only
2 phases, each with 5 datasets of similar difficulty and

the datasets of the first phase were each matched with
one corresponding dataset on a similar task in the sec-
ond phase. As a result, transfer was made simpler.

Concerning the starting kit and baseline methods,
we provided code that ended up being the basis of
the solution of the majority of participants (with no-
table exceptions from industry such as Intel and Or-
ange who used their own “in house” packages). Thus,
we can question whether the software provided biased
the approaches taken. Indeed, all participants used
some form of ensemble learning, similarly to the strat-
egy used in the starting kit. However, it can be argued
that this is a “natural” strategy for this problem. But,
in general, the question of providing enough starting
material to the participants without biasing the chal-
lenge in a particular direction remains a delicate issue.

From the point of view of challenge protocol de-
sign, we learned that it is difficult to keep teams fo-
cused for an extended period of time and go through
many challenge phases. We attained a large num-
ber of participants (over 600) over the whole course
of the AutoML challenge, which lasted over a year
(2015/2016) and was punctuated by several events
(such as hackathons). However, few teams participated
to all challenge rounds and despite our efforts to fos-
ter collaboration, the general spirit was competitive. It
may be preferable to organize yearly events punctuated
by workshops. This is a natural way of balancing com-
petition an cooperation since workshops are a place of
exchange where participants get rewarded by the recog-
nition they gain via the system of scientific publica-
tions. As a confirmation of this conjecture, the second
instance of the AutoML challenge (2017/2018) lasting
only 4 months attracted nearly 300 participants.

One important novely of our challenge design was
“code submission”. Having the code of the partici-
pants executed on the same platform under rigorously
similar conditions is a great step towards fairness and
reproducibility, as well as ensuring the viability of so-
lutions from the computational point of view. We have
imposed to the winners to release their code under an
open source licence to win their prizes. This was good
enough an incentive to obtain several publicly avail-
able software as the “product” of the challenges we
organized. In our second challenge (AutoML 2018),
we have made use of dockers. Distributing the docker
makes it possible for anyone downloading the code of
the participants to reproduce easily the results without
stubling upon installation problems due to inconsisten-
cies in computer environments and libraries. Still the
hardware may be different and we find that, in post-
challenge evaluations, changing computer may yield



significant differences in results. Hopefully, with the
generalization of use of cloud computing that is be-
coming more affordable, this will become less of an
issue.

The AutoML challenge series is only beginning. Sev-
eral new avenues are under study. We are preparing the
NIPS 2018 Life Long Machine Learning challenge in
which participants will be exposed on data whose dis-
tribution slowly drifts over time. We are also preparing
a challenge of automatic machine learning from raw
data with Google Zurich, priviledging transfer from
similar domains.
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A Usage of ensembling in Kaggle competitions

Competition Use ensemble?
1st place: 7
TensorFlow Speech Recognition Challenge (ends 2018-01-17) 2nd place: Yes

3rd place: Yes
1st place: Yes

Corporacion Favorita Grocery Sales Forecasting (ends 2018-01-16) 2nd place: ?
3rd place: Yes
Cdiscounts Image Classification Challenge 1st place: Yes
(ends 2017-12-15) 2nd place: Yes
Porto Seguros Safe Driver Prediction (ends 2017-11-30) st place: 7
2nd place: ?
3rd place: ?

1st place: Yes
3rd place: No
2nd place: ?
3rd place: ?
1st place: Yes
3rd place: Yes

Carvana Image Masking Challenge (ends 2017-09-28)

Instacart Market Basket Analysis (ends 2017-08-15)

Planet: Understanding the Amazon from Space (ends 2017-07-21)

. 1st place: 7
Mercedes-Benz Greener Manufacturing (ends 2017-07-1) ond place: Yes
Sberbank Russian Housing Market (ends 2017-06-30) 1st place: Yes

6th place: Yes
9th place: Yes
1st place: 7
Quora Question Pairs (ends 2017-06-07) 2nd place: Yes
3rd place: Yes
Google Cloud & YouTube-8M Video Understanding Challenge (ends | 1st place: Yes
2017-06-07) 5th place: Yes
1st place: 7
2nd place: Yes
8th place: Yes
9th place: Yes

Intel & MobileODT Cervical Cancer Screening (ends 2017-06-22)

Data Science Bowl 2017 (ends 2017-04-13)

The Nature Conservancy Fisheries Monitoring (ends 2017-04-13)

. . 5th place: ?

Dstl Satellite Imagery Feature Detection (ends 2017-03-08) 9th place: ?
2nd place: Yes
Outbrain Click Prediction (ends 2017-01-19) 3rd place: Yes

4th place: Yes

Table 1: Overview of the usage of ensemble techniques in winner solutions of 2017-2018 Kaggle competitions[Kag]. Source:
http://ndres. me/kaggle-past-solutions/. We list only competitions with winner solution overviews available. The
usage is marked as ‘Yes’/ ‘No’ if it is mentioned directly in the winner’s solution overview, otherwise it is marked as ‘?’.
Up to 23 winners out of 36 have employed ensembling in their winning solutions, only 1 winner declared the non-use of
ensembling.
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