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Abstract: This paper revisits distributed termination detection algorithms in the
context of high-performance computing applications in task systems. We first outline the
need to efficiently detect termination in workflows for which the total number of tasks is
data dependent and therefore not known statically but only revealed dynamically during
execution. We introduce an efficient variant of the Credit Distribution Algorithm (CDA)
and compare it to the original algorithm (HCDA) as well as to its two primary competitors:
the Four Counters algorithm (4C) and the Efficient Delay-Optimal Distributed algorithm
(EDOD). On the theoretical side, we analyze the behavior of each algorithm for some
simplified task-based kernels and show the superiority of CDA in terms of the number
of control messages. On the practical side, we provide a highly tuned implementation
of each termination detection algorithm within PaRSEC and compare their performance
for a variety of benchmarks, extracted from scientific applications that exhibit dynamic
behaviors.
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Algorithmes de détection de terminaison
distribuée pour systèmes de tâches sur

plates-formes HPC

Résumé : Ce rapport compare plusieurs algorithmes de détection de
terminaison distribuée pour systèmes de tâches sur plates-formes HPC. Nous
présentons une nouvelle version de l’algorithme de distribution de crédit, et
le comparons à la version originale, ainsi qu’à deux autres algorithmes de
la littérature. Nous analysons tous ces algorithmes en terme de nombre de
messages de contrôle et en proposons une implémentation efficace au sein
du système de tâches Parsec.

Mots-clés : Détection de terminaison, Distribution de crédit, Systèmes
de tâches, MPI



Distributed Termination Detection 3

1 Introduction

A distributed application is terminated if all processes have completed the
computations assigned to them and no message is in transit within the
interconnection network. Termination detection is a fundamental issue for
distributed systems, because – for dynamic applications – no process has
complete knowledge of the global configuration (the state of all processes
and of the network) [8]. In particular, an idle process may be reactivated
by a message from another process, complete its new assignment, send some
work orders to be completed by remote processes, and then become idle
again and so on. Many active-to-idle and idle-to-active transitions can take
place before the application eventually terminates. Since the pioneering
work of Dijkstra, Scholten, and Francez [6, 9], countless algorithms have
been proposed for termination detection.

Many high-performance computing (HPC) applications can rely on straight-
forward techniques for termination detection. For instance, many dense or
sparse factorization algorithms terminate when the bottom-right diagonal
element of the matrix has been updated, and termination can safely be de-
clared right after the completion of that last operation. More generally,
many HPC applications are structured as a task graph with all dependen-
cies statically known before execution. Termination can safely be declared
once all exit tasks (tasks without any successor task) of the graph have been
completed. However, there are also many HPC applications the task graphs
of which are dynamically updated during the execution: the application task
graph is data dependent, and new tasks may be created depending on the
value of the output of another task. Typical examples are partial differen-
tial equation (PDE) schemes, where the necessary degree of refinement is
dictated by the physics of the simulated material. For all of these applica-
tions, a distributed termination detection algorithm must be implemented.
Our main contribution is to provide a new termination detection algorithm
that is specialized for HPC platforms and considers the particular challenges
inherent to their scale and interconnect properties. For instance, HPC appli-
cation workloads are often communication intensive and latency/injection
rate sensitive, with detrimental implications for algorithms that delay, or
add extensive management of, application messages. In this paper, we con-
sider different classes of termination detection algorithms and evaluate their
behavior with respect to this HPC-centric machine and workload context.

We distinguish and compare three main classes of algorithms for ter-
mination detection. First, many algorithms use ascending and descending
waves of control messages, and we discuss the Four Counter algorithm (4C)
– a state-of-the-art wave algorithm – in Section 3. The Credit Distribu-
tion Algorithms (CDA) are another set of algorithms proposed indepen-
dently by Huang [13] and Mattern [18]. These algorithms are also known
as weight-throwing algorithms, and they use a controlling agent that ini-
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Distributed Termination Detection 4

tially distributes some credit to all processes. When sending an application
message, a process keeps a fraction of its current credit and transfers the
remaining fraction through the message; upon reception of a message, the
credit carried by the message is added to the credit of the receiving pro-
cess. Finally, when becoming idle, a process returns its credit to the con-
trolling agent. The controlling agent declares termination when all of the
initially distributed credit has been returned to it. We introduce the origi-
nal algorithm, “Huang’s CDA” (HCDA), discuss several existing variants,
and propose a novel CDA algorithm dedicated to HPC platforms in Sec-
tion 3. Finally, a more recent class of algorithms, Efficient Delay-Optimal
Distributed (EDOD) termination detection algorithms [16], requires that a
control message acknowledging primary messages reception is sent by the
receiver of each application message back to the sender; this is to ensure
that the sender can be safely declared terminated once all of its messages
have been acknowledged. These control messages go up and down a control
binary tree – independent of the application communications. EDOD is
carefully designed to minimize the latency of termination detection, and we
describe it in more detail in Section 3.

Our main contribution is the design and implementation of a novel CDA
variant that drastically improves performance, under the constraints of an
HPC system, with a more conservative but mathematically accurate credit
management system, where the borrowing operation can be satisfied by a
neighbor process with more abundant resources. We evaluate the algorithms
through (1) a theoretical analysis in terms of control messages for two ap-
plications, the token ring, and synchronous tree-based task systems; and
through (2) extensive experiments conducted in a task runtime system. We
provide an optimized implementation for the four algorithms under study
and avoid non-scalable messaging patterns with hotspots at processes with
a large number of neighbors. This will allow us to focus on the number of
messages generated by each algorithm as the key indicator of performance
and overhead.

The paper is organized as follows. In Section 2, we present motivating
applications and systems that require termination detection. We review 4C,
HCDA, and EDOD in Section 3. We introduce our new CDA algorithm
in Section 4 and provide a theoretical comparison with 4C and EDOD in
Section 5. We report extensive experiments in Section 6, showing that CDA
dramatically outperforms HCDA and has a much smaller impact on exe-
cution for real-world applications than both competitors (4C and EDOD).
Finally, in Section 7 we survey related work. We provide concluding remarks
and directions of future work in Section 8.
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Distributed Termination Detection 5

2 Dynamic Applications, Task-Based Runtime Sys-
tems, and Termination Detection

Termination detection is often implicit or trivial in regular, static applica-
tions, for which the control-flow of the application and/or the initial load
balance of the work is sufficient to decide, locally, the termination. The
issue becomes more crucial for dynamic applications expressed over asyn-
chronous programming paradigms, for which the total amount of work is
data dependent—and therefore remains unknown until completion. Here,
we focus on efficiently detecting that an application producing supplemen-
tary work and messages, from process-local criterion, is globally complete.

To illustrate the concept, we introduce an example: k-dimensional trees
that represent approximations of multidimensional functions and operators.
Consider for k = 1 a function, f(x), that should be approximated over a
domain, [A,B]. A 1-D tree is used to approximate the values of f by splitting
[A,B] into subdomains, [ai, bi). For each subdomain, a leaf in the tree is
created that carries a single value: the average of f in that subdomain,∫ b
a f(x)dx/(b − a). The size of the subdomain (and thus the quality of the

approximation) is set by selecting the depth of the leaves in the tree. Figure 1
illustrates this approach.

Figure 1: Sample application: 1−dimensional tree whose refinement locally
depends on the slope of the target function.

A task-based approach to create such representations is used in the
Multiresolution ADaptive Numerical Environment for Scientific Simulation
(MADNESS) [12], which is a high-level software environment for the res-
olution of integral and differential equations in multiple dimensions using
adaptive and fast harmonic analysis methods with guaranteed precision.
The operation of creating a tree that represents a given function in a given
domain for a target precision is called a “projection.” A natural and effi-
cient algorithm to implement the projection consists of walking down the
tree in parallel, with each task instantiating a node and deciding locally if
a given node in the tree is refined enough to reach the target precision, in
which case it is defined as a leaf. If not, its 2k children are spawned to
increase the refinement. As the algorithm proceeds with refining the nodes,
a mapping defines which tasks/nodes are held by which process of the par-
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Distributed Termination Detection 6

allel application. Depending on the targeted function, refinement, and data
distribution, a process may be done with all current tasks but still receive
more tasks to instantiate higher refinements at any time—until all processes
are finished with all tasks.

A naive approach to detect termination would be to: every time a task
spawns refinement nodes, wait for the entire subtree to complete before
letting the task complete. This approach has multiple obvious drawbacks: if
the wait monopolizes computing resources, a starvation will occur when the
number of nodes in the k-dimensional tree exceeds the number of computing
elements. Even if better strategies are implemented to avoid this resource
consumption, control information about the completion of each task must
be sent to the process holding the parent node, thereby introducing large
delays and costs. Because a process may receive work at any time, local
observations that the number of tasks to complete has reached zero is not
sufficient to decide termination, and a distributed termination algorithm is
necessary.

This issue occurs in many tree-based algorithms and is a key part of
composition. Occurring frequently in MADNESS algorithms, multiple func-
tions must be projected in order to be derived, summed, multiplied and
integrated to compute a solution to the final problem. To reduce overhead,
all of these operations should start with maximum concurrency, but knowl-
edge about the completion of dependent operations is necessary to ensure
the correctness of the result. Distributed termination detection algorithms
rely on observing the activity of the processes, as well as the injection and
delivery of application messages, sometimes modifying them to piggyback
information. Since these roles are assigned to the runtime system, it is also
natural to assign the role of detecting the termination of global operations
to the runtime environment.

3 Algorithms for Termination Detection

Sections 3.2 to 3.4 detail the main features of the three primary detec-
tion termination algorithms from the literature: 4C (waves with in-transit
message detection), EDOD (acknowledged primary messages), and HCDA
(Huang’s credit distribution), which we contrast with our own CDA algo-
rithm in Section 4. Beforehand, in Section 3.1, we review the system model
common to all algorithms.

3.1 System Model

We consider a distributed system comprised of a set of P processes with
an independent clock and a local memory. The processes are connected
through an asynchronous interconnection network capable of carrying mes-
sages in 1-port duplex mode with an arbitrary, but finite, delay. Processes
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Distributed Termination Detection 7

and messages are considered here in the general sense: processes may employ
internal shared-memory parallelism (which is abstracted from the model),
and remote memory accesses can be considered as asynchronous messages.
The processes and network are reliable, and we assume that the intercon-
nection network is complete; that is to say: any process may send a direct
message to any other processes. We also assume that messages may not over-
take; in other words, the network is assumed to be FIFO, or the network
library manages ordering and reemission as necessary (e.g. MPI). Although
not required for correcting the algorithms, these assumptions simplify per-
formance analysis.

A parallel workload executes internal actions on the processes, either
executing a task or creating a new task. Task mapping (to processes) is de-
termined by an application-provided mapping function, and successor tasks
may be mapped onto a remote process, which entails the emission of a mes-
sage. When the destination of a message is the local process, it is considered
a local action.

In such a distributed system, we consider the termination detection prob-
lem. Termination detection is achieved when all processes know that every
process has completed the workload. More formally, a process is still con-
sidered active when it has pending actions, including when it is executing
a task, has scheduled tasks to execute locally, or has pending emissions to
perform. When a process does not have any further pending local actions,
it becomes idle. A process may exit from the idle state and return to the
active state only when it receives a message (i.e., tasks can be only created
upon completion of another task). Without loss of generality, we consider
that, initially, one process contains a startup task (there is a trivial transfor-
mation to render any workload with multiple initial tasks compliant). The
termination of the workload is a global stable state that is reached when, in
a global snapshot [3], every process is in the idle local state, and there are no
in-transit messages (since, otherwise, these in-transit messages would create
work for some of the idle processes). The termination is detected when every
process has been informed that this global state has been reached.

Termination detection algorithms are thus distributed algorithms that
observe that the global state has been reached and then announce it to
all processes. In some algorithms, the detection and announce phases may
be merged or overlapped. The distributed termination detection algorithm
likely requires the exchange of secondary messages (i.e., supplementary con-
trol messages added to the primary messages generated by the parallel work-
load). These secondary messages allow the process states to be gathered/re-
ported to a centralized entity or be part of a termination broadcast.
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Distributed Termination Detection 8

3.2 The 4C Wave Algorithm

In wave algorithms, when a process becomes idle, it initiates a wave to verify
the state of other processes in the system. The wave crosses the network and
collects the status of individual processes and their communication channels
at some process – either at the initiator or at some external entity. That
process then inspects the collected global state to ascertain when the global
termination state has been reached. For example, a process that switches
from active to idle may initiate a distributed snapshot. The snapshot per-
mits to detect in-transit messages, i.e., messages that have been emitted
before the beginning of the wave, but received after its beginning at another
process. Thus, after completing the snapshot, a process can report to the
announcer if it was active, or if it detected an in-transit message at the log-
ical time of the snapshot. Unfortunately, this approach requires performing
a large number of waves. Specifically, one wave for every process’s transition
from active to idle, which – in the worst case – may result in as many waves
as primary messages. The approach also suffers from a large termination
detection delay.

The 4C wave algorithm, which has seen some practical uses [12], can
avoid some of these caveats. In this algorithm, processes are organized
along a secondary tree overlay, and the root of that tree announces when
termination is detected. Every process, p, counts how many primary mes-
sages it has sent, sp, and received, rp. It also maintains two accumulating
counters, σsip and σrip, initially set to 0, representing the cumulative number
of primary messages sent and received by all processes in the subtree rooted
at p – as collected during wave i.

Independent of their idle or active state, processes can be in the UP or
DOWN state (UP initially). When a leaf in the tree becomes idle in the UP
state, it enters the DOWN state and sends its two counters to its parent in
a STOP message. When a node in the tree receives a STOP message from
its children, it accumulates the counters. When it becomes idle in the UP
state and has received a STOP message from all of its children, it enters the
DOWN state and propagates the counters to its parent.

When the root enters the DOWN state, it compares σsiroot, σr
i
root, σr

i−1
root,

and σsi−1root. If they are all equal, it broadcasts the termination; otherwise, it
sends down a REPEAT message (propagated by all) that initiates the nodes’
transition from the DOWN state to the UP state (thus starting another
wave).

Comparing σsiroot and σriroot is not a sufficient condition for termination,
as one has to account for orphan messages, i.e., messages emitted by some
process after the wave and received by some other process before the wave.
If the wave is crossed by orphan messages, the reception is counted in the
accumulator, σriroot, but its emission is not. Thus, an orphan message may
cancel the difference, σriroot − σsiroot, even when an in-transit message is
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Distributed Termination Detection 9

present, which would render the algorithm incorrect. If the value of σsiroot
remains constant during two consecutive waves, then the prior wave had no
orphan messages, hence the counter comparison is a valid estimator for the
absence of in-transit messages.

3.3 Optimal Delay Algorithm

Mahapatra and Dutt [16] note that many termination detection algorithms
focus on optimizing for the minimal number of secondary messages but often
exhibit poor detection delay on commonly used primary communication
patterns, like k-ary n-cubes, especially when considering a bounded port
model, where message management time is considered. For this reason, the
authors focus on designing an algorithm the purpose of which is to attain
the optimal detection delay on arbitrary primary communication patterns.

Their EDOD algorithm requires that primary messages be acknowledged
by secondary messages to prevent premature termination announcements.
Their algorithm also uses a secondary static spanning tree to reduce status
change messages to the root and to broadcast the termination announce-
ment. The secondary overlay can be (but does not have to be) extracted
as a subset of the primary communication topology when it is known in ad-
vance. The root is then selected as a central process at a minimal distance
to all leaf processes.

When the root process becomes idle, it announces the termination. When
a non-root process becomes idle, it sends a STOP message to its parent. A
process cannot become idle until it receives a STOP message from all of its
children.

During the normal course of the computation, the algorithm counts the
outgoing primary messages. A process cannot become idle until it receives a
secondary acknowledge message for every outgoing primary message. When
receiving a primary message, the receiver, r, may be active or idle.

• When r is active, it acknowledges the reception using a direct ACKs,r

secondary message to the sender s.

• When r is idle, it becomes active and sends a RESUMEs,r message to its
parent.

The parent may receive the RESUMEs,r message when it is active or idle.
When an idle parent receives a RESUMEs,r message from a child, it be-
comes active, forgets the reception of the STOP message from that child,
and forwards the RESUMEs,r message to its parent. When an active parent
receives a RESUMEs,r message from a child, it forgets the reception of the
previous STOP message from that child, and sends the ACKs,r to r, follow-
ing the inverse path from the RESUMEs,r message, then r sends ACKs,r to
s directly. In effect, delaying the ACKs,r message prevents the root of the
subtree containing s and r from becoming idle when a potential RESUMEs,r
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Distributed Termination Detection 10

message is canceling the STOP-message-induced actions on r’s ancestors.

3.4 Credit Distribution Algorithms

In a credit distribution algorithm (e.g., HCDA), as originally proposed in-
dependently by Huang [13] and Mattern [18], an initiator controlling agent
starts the computation with Ctotal total credit, and the initiator distributes
the credit among processes according to the initial activity of the processes.
During execution, messages carry credit between processes: when a process
sends a message, it sends a fraction of its credit along with the message and
keeps a fraction of the credit for itself. When a process receives a message,
it adds the message-carried credit to its own credit stash. When a process
becomes idle, it returns its entire stash of credit to the initiator. From there,
the initiator process can detect the termination of all other processes when
it again has Ctotal credits. Note that, as usual, an idle process may reset to
active as a result of receiving a message. In this case, the process transition-
ing from an idle to an active state inherits the credit that has been carried in
the in-transit message, thus guaranteeing that the initiator misses a fraction
of the Ctotal credits for as long as any in-transit or active processes remain.

This approach is elegant in theory, but it suffers from multiple drawbacks
that hinder its implementation. In non-infinite precision arithmetic, the
HCDA algorithm is subject to an underflow problem when dividing the
weight into two halves upon message emission. To partially alleviate this
problem, Mattern [18] suggests using only credits of the form X = 2−Y ,
where Y is an integer, and to encode Y = − log2X to represent X. This
requires some modifications to the algorithm, outlined below.

• Use 2−q as the initial local credit, where 2q−1 < P ≤ 2q, and total credit
is now Ctotal = P2−q.

• An active node receiving a basic message returns the message-carried
credit to the collecting agent, instead of storing it locally, to keep its
own summing simple.

Then, all message weights have a weight, 2−Y , for some Y , and sending
a message splits the weight by incrementing Y . However, the complete
summation is delegated to the controlling agent rather than eliminated,
and many secondary control messages are needed to return the non-locally
summed credit to the controlling agent.

Another variant suggested in [8, Ch. 6] allows a node without any re-
maining credit to create its own credit currency and start a weight-throwing
termination detection subcall. Then, that node returns its weight to the
initiator when it has become passive and its subcall has terminated. The
weights originating from the initiator and from the node must be maintained
separately. Again, this variant incurs additional control overhead and ex-
tra delays. In Section 4, we discuss how we build upon the basic HCDA
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Distributed Termination Detection 11

strategy to design an algorithm suitable for extreme-scale, distributed HPC
systems in a manner that avoids producing a large number of secondary
credit return messages and operates without messaging delays.

4 CDA for HPC

We expand on the classical CDA algorithm with original considerations for
HPC platforms executing large-scale, distributed dataflow programs. The
major challenge with CDA is the credit attrition resulting from the non-
infinite divisibility of the credit representation. Our CDA algorithm strives
to achieve a low number of control messages while reducing the disruption
of the exchange of primary messages. In our CDA algorithm, credit is rep-
resented as integer values (i.e., credit is not infinitely divisible but can be
summed efficiently without arbitrary precision arithmetic). During the ini-
tial state, credit is distributed equally among nodes. Each process starts
with an initial credit of value, Cinit, known by all. The total amount of
credit distributed initially is thus Ctotal = PCinit. Note that, in certain ap-
plications, not all processes are initially active, and an application-specific
policy may have achieved a more optimal initial distribution (e.g., by di-
viding the credit among initially active processes) but at the expense of
losing generality. Initial credit is computationally generated and requires no
secondary messages to be distributed.

When a process becomes idle, it returns its credit to the controlling
agent with a FLUSH secondary message. This strategy has two drawbacks:
(1) it increases the number of control messages, significantly in the worst
case; and (2) it accelerates the rate of global attrition of credit in non-
initiator processes by removing the flushed credit from circulation (hence
increasing the chance that some active process will run out of credit). In
primary algorithms executed as a dataflow, the locally visible horizon of
tasks scheduled in the runtime can be leveraged to detect that an outgoing
message is terminal, that is, the last message sent before a transition to idle.

We observe that sending the whole locally available credit along with
pending terminal emissions has multiple benefits: it avoids generating FLUSH
messages and maintains more credit available among active processes. When
sending a primary message, a process splits its locally available credit (ac-
cording to different policies detailed below) and “piggybacks” a fraction of
the credit onto the message. Because the piggyback is of fixed size (since
our credit representation does not grow to remain infinitely divisible), the
practical cost of adding the piggyback to primary messages is trivial. How-
ever, it is possible that a process that needs to emit primary messages would
run out of locally available credit. In this case, the process requests (with a
secondary BORROW message) the allocation of supplementary credits from
the controlling agent.
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Distributed Termination Detection 12

The controlling agent counts how many credits have been created during
the execution in a counter that grows as necessary, thereby ensuring that
the controlling agent will never fail at providing supplementary credits. As
a consequence, more credit than is representable by the maximum value of
local and message credit may be in circulation in the system. If a non-
controller process receives a message containing more credit than it could
accumulate in a single variable without an overflow, its local credit is set
to the maximum, and all remaining credit is immediately returned to the
controlling agent. For as long as a process is out of credit (e.g., the time
period required for the secondary BORROW request to round-trip to the
control agent), the process has to delay the emission of all primary messages,
since it would otherwise carry the risk of resetting the destination process
to active without holding message carried credit.

Running out of credit is a major performance hurdle and should be
avoided. To reduce the likelihood of running out of credit, we devise two
complementary strategies: (1) the credit division strategy that we employ
operates under multiple regimes, and (2) credit borrowing is prefetched.

The minimum credit that a primary message may safely carry is 1. While
this strategy reduces the attrition rate at the sender process (by leaving as
much credit as possible at the source), if a message reaches a process that
has little credit left (e.g., an idle process that had rid itself of all its local
credit), then that process will need to borrow credit from the controlling
agent and delay the next primary message. Conversely, if a process divides
the credit into two halves for every message (as is customary in many CDA
algorithms, including HCDA), then local credit declines very quickly (at an
exponential rate) with the number of outgoing messages – leading to a high
chance of the process running out of credit before it receives credit naturally
through its primary message receptions.

We devise a multi-regime strategy that avoids both issues. When a pro-
cess holds abundant credit (i.e., above a threshold value, Ccon) the process
employs a credit division strategy to improve the chances that destination
processes may carry more message emissions without borrowing. Multiple
messages may be sent simultaneously (from the view of the emitter process
and independently of the port model of the network) when a task creates
multiple successors at remote processes. Each individual successor task may
represent an individual emission, yet all are created during the same lo-
cal step. Message emissions may also appear simultaneous for a process
when considering an asynchronous communication system that enqueues
non-blocking emissions. Messages may be scheduled from additional tasks
that are completing at the local process before the initiation of previously
scheduled emissions at that same process. In both cases, instead of dividing
the credit by two for every message, credit is divided uniformly among all
outstanding emissions when message emissions are simultaneous. We main-
tain a counter of shares, S, which counts how many shares are known for the
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Distributed Termination Detection 13

current credit. S is equal to the number of outgoing messages, plus one if
the process remains active. Letting Ccur denote the current credit amount,
each message receives bCcurc /Sc credits.

When local credit drops below Ccon, the allotment of credit per message
is modified to carry a fixed amount of credit per message Wcon. The goal is to
conserve the local credit to enable the process experiencing low availability
of credit to keep issuing messages with no delays, for as long as possible.
Overall, the credit allocation function uses the following formula to set the
credit, wi, on an outgoing message, mi, at a process with current credit,
Ccur, and S shares.

wi =

{
bCcur

S c if Ccur > Ccon

min(bCcur
S c,Wcon) if Ccur ≤ Ccon

In addition, to further avoid delaying emissions, when less than Cborrow

is available, the process proactively issues a BORROW message to replenish
its credit with additional credit from the control process. The amount of
credit returned by the control process is Cinit. In some cases, this may
increase the number of secondary BORROW messages, as the process may
have received credit (from primary message receptions) before reaching an
indivisible credit, but the severe performance penalty resulting from delaying
primary messages supports the deployment of this optimization.

5 Analysis

In this section, we compare the 4C, EDOD, HCDA, and CDA algorithms
in terms of their number of control messages. We use two simple applicative
kernels for this comparison: (1) the token ring, which is the archetype case
study for distributed algorithms; and (2) tree-based synchronous computa-
tions, which are a good approximation of the target applications used in
Section 6.

5.1 Token ring

The token ring is a kernel widely used to assess the performance of dis-
tributed algorithms [20, 17, 7]. Informally, it consists of several steps, with
a token randomly moving from one process to another at every step, and a
random number of steps. We use the following instantiation.

• The token is initially owned by process 0.

• With a fixed probability of q < 1, the token owner draws a process number
randomly and uniformly in [0,P − 1] and sends a message (the token) to
that process. The algorithm stops with a probability of 1− q.

The expected number of steps (token moves) of the algorithm is 1
q . At each

step, the token owner performs some computation, the precise length of

RR n° 9181



Distributed Termination Detection 14

which is not important but is assumed to be long enough so that all control
messages of the termination detection algorithm are processed before the
next step begins. In other words, we can view the steps as synchronized,
with the termination algorithm detecting termination (or not) at the end of
each step.

The token ring mimics the termination pattern of an application that
ends with a linear chain of tasks, the length of which is data dependent.
Our results are shown below in Theorem 1.

Theorem 1. The expected number of control messages of 4C, EDOD,
HCDA, and CDA for the token ring is the following:

• E(4C) ≥ 1
q

2P
log(P) + P + o(P)

• E(EDOD) ≥ 1
q × 3 log(P) + P + o(P)

• E(HCDA) = 1
q + 2

log(Cinit)q
+ P + o(P)

• E(CDA) ≤ 2P

We see that EDOD is more efficient than 4C at each step, and that
CDA is the clear winner as soon as the token circulates at least P times.

Proof. At each step of the token ring algorithm, the sender node makes an
active-to-idle transition, while the receiver node is awakened by the token
message and makes an idle-to-active transition. Because we assume the
steps do not overlap, these are the only two transitions during the step, and
all the other processes remain idle.

For the 4C algorithm, the sender initiates a chain of messages by noti-
fying its parent in the control tree. There are two cases, described below.

• If the receiver is not an ancestor of the sender in the control tree, it will
notify its parent, which in turn will notify its parent, thereby eventually
reaching the root. If the current step is not the last step, the root will
detect that the current wave has failed (because not all nodes have re-
ported being idle) and will propagate this information down to tree to all
processes via a descending wave; if this is the last step, the root will detect
termination and send the final descending wave; in both cases, the cost is
P − 1 control messages.

• If the receiver is an ancestor of the sender in the control tree, the chain of
messages from the sender to the root will be blocked by the receiver. But
this latter event has a small probability, because there are at most log(P)
nodes in the path from the sender to the root. Hence, the probability of
the receiver belonging to that path is at most log(P)

P .

Altogether, the expected number of control messages per step is at least

(1− log(P)

P
)(P − 1) +

log(P)

P
× 1 = P + o(P)
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Adding the cost, P − 1, of the final notification broadcast, we get the re-
sult for E(4C), since the expected number of steps is 1

q . For the EDOD
algorithm, we have the following analysis.

• Initially, every node transitions from active to idle, either immediately or
after sending the first message for the initiator, and sends a message to
its parent in the control tree; therefore, there are P − 1 messages.

• For each token message at each step, an acknowledge message is sent by the
recipient to the sender. It goes through a chain of resume and acknowledge
all along the unique path in the control tree connecting both nodes. The
number of control messages is equal to the distance between both nodes
in the control tree. The average distance between two nodes in a complete
binary tree of P nodes is asymptotically 2 logP [22]. As a side node, we
see that this average distance is of the same order as the diameter of the
tree, which can be explained by the fact that the majority of nodes are
leaves of the tree (see [22] for further details).

• We have to add the stop messages, propagated by the sender up to the tree,
which leads to logP additional messages per token message. Altogether,
the overhead is 3 logP per step.

Adding the cost, P − 1, of the final notification broadcast, we get the result
for E(EDOD). Finally, we discuss the number of control messages for the
credit distribution algorithms. For HCDA, we count a message (to return
the credit) every step and two messages (borrowing request and extra credit)
every log(Cinit) steps, when the credit piggybacked in the primary message
runs out. For CDA, this means the following.

• After the first step, process 0 (the source node) becomes idle after the
token message is sent, and it transfers all its current weight, Cinit, into
the token message and has nothing to return to the controlling agent. All
nodes except the source node were active and became idle during the first
step, hence they return their total weight to the controlling agent, which
amounts to P − 1 control messages.

• While the token iterates during the following steps, the sender has weight,
Cinit, and transfers it into the message, and then it has zero weight and
does nothing more. The recipient had weight, 0, and gets Cinit from the
message.

• Upon termination, the recipient sends its weight, Cinit, back to the con-
trolling agent.

Altogether, the overhead is P messages (out of which P − 1 are sent during
the first step), hence the result for E(CDA) when adding the cost of the last
termination broadcast. An important distinction for CDA is that the total
number of control messages is independent of the number of steps.
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5.2 Non-deterministic binary trees

We consider now the projection operation in 1−dimensional trees described
in Section 2. In practice, we can model such an operation with a task graph
that unfolds a binary tree, each node having two children with some proba-
bility, and being a leaf otherwise. Since an exact analysis with arbitrary task
weights is out of reach, we present a simplified scenario to evaluate the av-
erage performance of the four algorithms. The simulation works as follows:
first, we precompute some application trees with the following algorithm:

(1) Start with a complete tree of height Lmin = 3.

(2) For each leaf, at level l with probability λl, refine by replacing the leaf
with a complete subtree—the height of which is drawn uniformly and
at random between 2 and 5 (i.e., we add between 2 and 30 new nodes).

(3) Repeat the last step on all new leaves until no leaf is refined.

(4) Crop the tree if its height exceeds Lmax.

The tasks of the tree are labeled using a breadth-first order: task 0 is at
level 0, and tasks 1 and 2 are at level 1, and so on. We generated different
sizes of trees using the following parameters: small trees with λ = 0.8 and
Lmax = 30, medium trees with λ = 0.9 and Lmax = 50, and big trees with
λ = 0.93 and Lmax = 60.

For the simulation, we consider that all tasks at a given level, l, are
processed at time, l. We have two different mapping strategies for mapping
tasks to processes: (1) a round-robin mapping, where task x goes to pro-
cess x mod P; and (2) a random mapping, where task x goes to a process
uniformly drawn in [0,P − 1].

We compute the messages sent by the application at each step (all tasks
at a level in the tree), and determine whether the processes become active
or idle at the end of the step. When a process was active and is again
active at the end of the step, we model the inherent distributed aspect of
the algorithms using three different models:
• Sinstant: The node does not transition to idle during the step, it remains
active throughout. This corresponds to the case where computations and
communications are instantaneous, thus a node knows in advance whether
it will stay active or not.
• Slocal: The node transitions to idle before returning to active, unless there
is a message to itself. This corresponds to the case where communications
are very slow compared to computations, all messages are received at the
end of the step, so a process transitions to idle because it cannot know in in
advance whether it will stay active or not.
• Sload: The node transitions to idle before returning to active only if it
has no message for itself and if its load is smaller than all the loads of the
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nodes that send a message to it: this is because in that case, it terminates
computing before receiving any load from the other guys. This corresponds
to the case where computations are long and messages takes very short
time. We define the load to be equal to the number of messages received
at the previous step (each of them implying the execution of a task, this
corresponds to assuming that all tasks have the same weight).

To compare the performance of CDA to other algorithms, we compute
the number of control messages sent by each algorithm, as detailed below.

• HCDA and CDA: all messages carry credits, so there is no control mes-
sage – except when one process becomes idle and needs to return its credit
to the controlling agent (flush), or when it does not have credit anymore
and needs to send a message to the controlling agent to continue (borrow).
Each time we detect that a process needs to flush or borrow, we add one
control message. Otherwise, when processes transition from idle to active
or from active to idle, we do not count anything, as these algorithms do
not send messages for simple transitions.

• 4C: once the list of messages (sent during a step) is computed, we go
through the list of all processes in descending order. If a process becomes
idle, we check if it belongs to the wave. If it does not, it is added to the
wave; if the process has children, they also belong to the wave. By going
through the processes in descending order, we ensure the wave goes as
high as possible in the control tree. Each time the root belongs to the
wave, we account for 2(P − 1) messages (2× the number of edges in the
control tree).

• EDOD: each time a process, pi, transitions from idle to active, it means
that it received messages from a set of processes, S. We then compute the
union of all paths from pi to each one of the processes in the set S. Finally,
we sum the number of edges in that union of paths, which accounts for
the number of control messages sent at this step by process pi. When a
process, pi, transitions from active to idle, we check that its whole subtree
is composed of idle processes at the end of the step. In that case, we
account for one control message that goes up in the control tree; there are
n messages total, where n is the size of the subtree, because each node of
the subtree is the root of an idle subtree itself.

Figure 2 presents the number of control messages for all algorithms. We
had to use a logarithmic scale on the Y-axis to report a range of different
numbers. The data presented is based on a big tree (but results are similar
on smaller trees) using an initial credit, Cinit = 232. First, these simulations
show that CDA dramatically outperforms HCDA. Interestingly, the only
occurrences of BORROWs for CDA are when the mapping is random and
there are only a few processes. In this case, the processes may receive a
lot of messages, thus a lot of tasks to execute, and thus a higher number
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Figure 2: Number of control messages per process for all algorithms (4C,
EDOD, HCDA and CDA) for a 202007-task tree. The first row uses a
round-robin mapping while the second row uses a random mapping.

of messages to send afterward. With the credit reducing quickly at the
beginning because there is a good probability that a process is idle in the
first steps, and there may be too many messages to send compared to the
credit. Still, the number of BORROWs is – on average – null, especially
when using round-robin mapping. The only overhead in terms of messages
added by CDA comes from the number of flushes (when a process becomes
idle and has no message to send). When using round-robin mapping, the
number of flushes per process is less than the number of control messages
sent by the 4C algorithm (on average for the first figure). However, when
we set the mapping to be random, 4C proves to be more efficient than CDA
when P > 100. Between random and round-robin mapping, the number of
control messages for CDA does not change much, whereas random mapping
drastically reduces the number of control messages for 4C.

Overall, we expect CDA to send less messages than 4C, in particular
when the number of processes increases. Looking at the top-right plot in
Figure 2, where the model is Sload and the mapping is round-robin (achiev-
ing more load balance than random), the number of flushes per process
tends to stay constant when the number of processes increases, whereas 4C
produces more messages.

RR n° 9181



Distributed Termination Detection 19

6 Experiments

6.1 Implementation

To evaluate the termination detection algorithms, we implemented them in
the Parallel Runtime Scheduling and Execution Controller (PaRSEC), a
micro-task system for distributed environments [2]. The Modular Compo-
nent Architecture (MCA) of PaRSEC enables dynamic module selection
to provide desired functionality. We extended PaRSEC to integrate a new
termination detection framework capable of providing support for multiple
termination detection strategies. We interfaced the termination detection
component with: (1) the scheduler to determine if there is local activity; (2)
the domain-specific language (DSL) to determine if there is potential future
activity; and (3) the communication engine to stay informed of outgoing and
incoming messages and to provide termination detection–specific messaging.
The communication engine is enhanced to allow the termination detection
module to piggyback information within primary messages (as needed to
implement CDA). Taking advantage of this MCA framework, we designed
and implemented support for all termination detection algorithms studied.

As stated previously, many applications can detect their own termina-
tion. The DSL or the algorithm can “pre-compute” the entire set of local
work, or the termination may occur at a single terminal node of the workload
task graph (e.g., fork-join parallelism). For such applications, we provide
the local and announce termination detection modules that simply inform
the runtime of the application-detected termination. The dynamic termina-
tion detection algorithms are implemented in additional modules, which are
then selected by the DSL when the application is dynamic.

6.2 Benchmarks

To evaluate the different algorithms, we implemented a couple of micro
benchmarks into one of the PaRSEC DSLs, a dataflow language, called
the Parameterized Task Graph (PTG). The micro benchmarks stress ter-
mination detection with different cases: the token-ring algorithm, which is
analyzed and described in Section 5.1, and the projection operation on a
1-D tree, which is described in Section 2 and analyzed in Section 5.2.

The token ring benchmark aims to emulate an application where the
workload moves across processes during the execution (e.g., computing the
cumulative distribution function – CDF – of another function provided as a
k-dimensional tree). For CDF, the input function must be summed at each
leaf to create the leaves of the target function; leaves with insufficient data
precision may be further refined by spawning additional local tasks. To emu-
late this behavior, we define a probability of branching during the circulation
of the token: while the main token continues circulating (emulating the sum
of leaves on the input tree), at each node, with probability qb, additional
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tokens that spawn local refinement leaves are created. This benchmark rep-
resents a class of dynamic applications where a pipeline of work terminates
at a singular (or a limited) number of processes, simultaneously.

The projection benchmark approximates the e−2x function in the domain
[−10, 10] with a variable precision threshold (the finer the precision, the
deeper the tree representing the approximation of the function). As is done
in MADNESS [12], tree nodes are distributed following a heuristic that
aims to balance the load while preserving some locality. Nodes at depth
d < log2(P), where P is the number of processes, are randomly assigned
to a process, while nodes at depth d ≥ log2(P) are assigned to the same
process as their closest ancestor with the same depth. This workload is
representative of the class of applications where multiple processes enter
termination simultaneously.

6.3 Results

6.3.1 Experimental Setup

All experiments were conducted on Argonne National Laboratory’s Mira
supercomputer – a Blue Gene/Q system with 48 compute racks and 786,432
total compute cores (Power7) running at 1.6 Ghz. All experiments used
a single midplane (512 compute nodes), and each compute node features
64 hardware threads. We deployed up to 32 MPI processes per compute
node; every MPI process has a computation thread and a communication
thread, each bound to their own hardware thread, hence 32 MPI processes
across 64 hardware threads. We ran each experiment 20 times and report all
measurements using Tukey Boxplots – the boxes delimitate from the 1st to
the 3rd quartile, and whiskers denote the lowest (respectively highest) datum
still within the 1.5 interquartile range of the lower (respectively highest)
quartile.

6.3.2 Token Ring

First, we consider the Token Ring studied in Section 5.1. Figure 3 presents,
for each termination detection algorithm, the number of control messages
(i.e., secondary messages not issued by the application) and the time between
the last transition to Idle and the last process that detected termination (de-
tection latency). At 16,384 processes, EDOD introduces so many control
messages on the critical path that the benchmark fails to complete within
the maximum runtime limit (60 s). This result reinforces the notion that
comparing termination detection algorithms based on the number of control
messages only is not enough; their differences are more subtle. It also high-
lights a critical difference between EDOD and 4C: both introduce a com-
parable number of messages in this case, but the impact of these messages
on the execution time is wildly divergent. The drastic impact on EDOD
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Figure 3: Random Walk, with branching probability, qb = 0.1.

Projection Precision

10−7 10−8 10−9 10−10 10−11 10−12

HCDA 34,388 58,638 69,542 437,542 659,761 2,578,376

CDA 30,154 25,038 25,767 26,338 24,468 27,562

Table 1: Average number of control messages for HCDA and CDA (pro-
jection operation with 16,384 processes).

is due to congestions introduced: as the token circulates, each process uses
the tree to send the acknowledge and resume messages to the source of the
token. The links of the tree are quickly overloaded with control messages
as they compete with the application messages for network resources. Com-
paratively, at most one wave is ongoing at each instant with 4C. Although
many serialized waves are necessary, they do not compete simultaneously for
the network resources. CDA and HCDA behave the best in this setup. For
CDA, the credit circulates with the token without diminishing significantly,
and very few control messages are necessary (about 2 per process, see Sec-
tion 5). For HCDA, although the credit expires every 32 steps, the number
of control messages is still linear with the number of steps and is smaller
than for EDOD or 4C at scale. CDA, HCDA, and 4C behave efficiently in
terms of detection latency, while the control communication tree of EDOD
is overloaded with control messages, resulting in high latency.
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6.3.3 Projection Operation

Second, we looked at the projection operation. Because of its naive credit
management strategy, HCDA suffers from scalability issues, and we could
not study a large problem with HCDA. To illustrate this, we compared
the number of control messages introduced by HCDA and CDA over the
projection operation on 16,384 processes and variable precisions (Table 1).
The HCDA algorithm quickly suffers from attrition due to early flushing
and bad credit splitting heuristics (as explained in Section 5.2), resulting in
many more FLUSH and BORROW messages than CDA. As the precision
goes finer, the problem size increases, and a higher number of leaves appear
in the projected tree. For each leaf, there is a potential for a flush message,
forcing the processor that created the leaf to flush its credit and borrow
more when a subtree is subsequently discovered. The number of control
messages grows up to 100× larger in the HCDA algorithm compared to our
CDA algorithm.

Moreover, the BORROW messages in the CDA and HCDA algorithms
are in the critical path of the execution, and, because their number explodes
for the HCDA algorithm, the centralized agent that must serve them is
quickly overloaded upon attrition. This is why attrition must be avoided to
obtain an efficient CDA implementation. Because of this, runs of the HCDA
algorithm would not complete in a reasonable time at a precision of 10−13 on
the platform we used. Whereas, by avoiding attrition, the optimized CDA
has no measurable impact on the overall execution time of this benchmark,
similar to the other algorithms studied (EDOD and 4C). Hence, for the
rest of the evaluation, we discard HCDA and consider only EDOD, 4C,
and CDA.

Figure 4 shows the number of control messages injected by each ter-
mination detection algorithm and the impact on the detection latency for
the projection operation. Note that, from the detection latency perspec-
tive, the three algorithms exhibit similar performance despite a drastically
different number of control messages. EDOD injects control messages for
each application message, even before any process enters the idle state. This
significantly impacts the number of control messages, which is orders of mag-
nitude higher than for CDA and 4C. Because these messages compete with
each other on the links of the underlying control tree, contention becomes
critical, and the detection latency suffers.

Although 4C behaves much better than EDOD in terms of control mes-
sages, it still creates many times more messages than CDA at large scale.
Note that the scales on both axes are logarithmic due to the significant dif-
ference in the number of messages between the different algorithms, which is
consistent with our simulations. At smaller scale, there are problem sizes for
which 4C introduces less control messages than CDA. The benchmark cre-
ates parallel work that is evenly distributed among the different processes.
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Figure 4: Projection operation with threshold of 10−13.

As a consequence, the waves of 4C are relatively slow to reach the root (all
processes have to switch to the idle state at least once for a wave to reach the
root), and the number of waves remains small (the number of waves is the
number of control messages divided by twice the number of processes). In
the case of CDA, almost all control messages are FLUSH messages. In this
application, processes computing leaves have no further use for the credit
they received when creating the leaves. Thus, they initiate a flush every
time they become idle after processing a leaf.

The FLUSH messages introduced by CDA are away from the critical
path, and only BORROW messages may delay the execution. Similarly, the
waves of 4C do not prevent the application from progressing normally. For
both algorithms, the noise introduced in the system does not measurably
degrade the performance.

6.3.4 CDA: Risk of Borrowing and Messages Delays

We detail our study of how CDA behaves during the projection operation in
terms of control messages that have an impact on the application (e.g., the
BORROW messages that prevent primary messages from being delivered
in a timely manner). Unlike 4C or EDOD, CDA can slow an application,
because it may run out of divisible credit. Indeed, if a process needs to send
a message but no divisible credit is locally available, the emission must be
delayed until credit is acquired – either from the root through a borrow or
from an incoming message. In Figure 5, we show, for a set of projections,
how many times an application message emission was delayed and how many
times processes issued a borrow order. First, one can see that these two
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Figure 5: CDA: Number of borrows and number of messages delayed during
a projection operation, threshold: 10−13.

measures are strongly correlated. This is to be expected as a borrow order
is issued when a process runs out of credit.

Second, one can also see that, depending on the number of processes
(hence depending on the number of tasks per process), the number of bor-
rows and delayed messages vary significantly. On one hand, as the scale
increases, the number of tasks per process decreases (for a fixed problem
size); thus, the number of messages and the credits required to initiate
messages also decreases. On the other hand, at small scale, each process
executes more tasks that are successors of tasks from remote predecessors,
and thus receives more credit from the application messages. This creates
a trade-off that is beneficial at each extrema but detrimental at the middle.
However, even when the number of borrows is maximal (at 2,048 processes),
no process initiates more than one borrow over the course of the execution.
Thus, despite producing a large number of delayed messages, that single
disruption has a negligible impact on the entire application runtime.

7 Related work

In [25], a method to more precisely define the metrics of efficiency for dis-
tributed termination detection is proposed. We leverage this method in our
theoretical and simulation-based analysis.

Termination detection has been studied extensively from the theoreti-
cal perspective: [23] demonstrates that different classes of detectors are
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equivalent through automatic transformations; see Ch. 6 of [8] and Ch. 9
of [11].

Wave termination detection algorithms include [14], based on distributed
snapshots, and [26], designed for asynchronous wide-area networks by com-
bining a reduction tree with a logical ring. Delay optimal algorithms in-
clude [21] and [16], and we compare one that is representative to this work.
Weight throwing, or distributed credit algorithms, have been extensively
studied theoretically: [1] proposes to use them to implement garbage collec-
tion mechanisms; [15] introduces the Doomsday termination detection pro-
tocol that deals with migrating tasks; [10] uses a mobile agent to count the
weight remaining in the system; [19] and [4] consider the particular case of
mobile networks; and [24] considers resilient approaches to these algorithms.

Few works compare, experimentally or practically, the different algo-
rithms to evaluate the behavior in average or real-world conditions. In [5],
this comparison is conducted over a simple benchmark consisting of 100
randomly generated nested graphs of tasks. Here, we studied the implemen-
tation in a production-quality distributed system, at scale, for benchmarks
representing real applications.

8 Conclusion

This paper revisits distributed termination detection algorithms in the con-
text of HPC applications, motivated by the need to efficiently detect termi-
nation of work flows for which the total number of tasks are data-dependent
and, hence, not known until during execution. We introduce an efficient vari-
ant, CDA, of the credit distribution algorithm, and compare it, both theo-
retically and practically, to the initial credit distribution algorithm, HCDA,
and to two other termination detection algorithms, 4C and EDOD. On the
theoretical side, we analyze each algorithm for simplified task-based kernels
and show the superiority of CDA in terms of the number of control mes-
sages. On the practical side, we provide a highly tuned implementation of
each termination detection algorithm within PaRSEC, and compare their
performance for a variety of benchmarks reflecting scientific applications
that exhibit dynamic behaviors. These experiments reveal the dramatic
shortcomings of the initial HCDA algorithm and corroborate the superior-
ity of our new CDA algorithm in terms of control messages, global overhead,
and latency detection.

Future work will see the integration of the proposed algorithm in future
releases of the PaRSEC runtime and a study to expand the number of
experiments with various task-based HPC workflows in an attempt to better
understand the impact of termination detection algorithms on different types
of applications.
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