
HAL Id: hal-01811874
https://inria.hal.science/hal-01811874

Submitted on 11 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tile-based Pattern Design with Topology Control
Xiaojun Bian, Li-Yi Wei, Sylvain Lefebvre

To cite this version:
Xiaojun Bian, Li-Yi Wei, Sylvain Lefebvre. Tile-based Pattern Design with Topology Control.
Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2018, 1, pp.23 - 38.
�10.1145/3203204�. �hal-01811874�

https://inria.hal.science/hal-01811874
https://hal.archives-ouvertes.fr

23

Tile-based Pattern Design with Topology Control

XIAOJUN BIAN, University of Hong Kong and INRIA Nancy
LI-YI WEI, Adobe Research and University of Hong Kong
SYLVAIN LEFEBVRE, INRIA Nancy

(a) tile set (b) sample output

Fig. 1. Tile-based pattern design. Users create a tile-set (a) with desired appearance and structure via our
authoring interface. From (a), our synthesis method can quickly tile outputs with designated sizes and shapes
(b) and suitable for digital manufacturing (Figure 2a).

Patterns with desired aesthetic appearances and physical structures are ubiquitous. However, such patterns
are challenging to produce − manual authoring requires significant expertise and efforts while automatic
computation lacks sufficient flexibility and user control.

We propose a method that automatically synthesizes vector patterns with visual appearance and topological
structures designated by users via input exemplars and output conditions. The input can be an existing vector
graphics design or a new one manually drawn by the user through our interactive interface. Our system
decomposes the input pattern into constituent components (tiles) and overall arrangement (tiling). The tile
sets are general and flexible enough to represent a variety of patterns, and can produce different outputs with
user specified conditions such as size, shape, and topological properties for physical manufacturing.

CCS Concepts: • Human-centered computing→ User interface design; • Computing methodologies
→ Shape modeling;

Authors’ addresses: Xiaojun Bian, University of Hong Kong, INRIA Nancy; Li-Yi Wei, Adobe Research, University of Hong
Kong; Sylvain Lefebvre, INRIA Nancy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2577-6193/2018/5-ART23 $15.00
https://doi.org/10.1145/3203204

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

https://doi.org/10.1145/3203204

23:2 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

Additional Key Words and Phrases: tile, pattern, design, appearance, structure, topology, analysis, synthesis,
user interface, rapid manufacturing

ACM Reference Format:
Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre. 2018. Tile-based Pattern Design with Topology Control. Proc.
ACM Comput. Graph. Interact. Tech. 1, 1, Article 23 (May 2018), 15 pages. https://doi.org/10.1145/3203204

1 INTRODUCTION

(a) tree and bird (b) oriental window

Fig. 2. Laser-cut outputs for the patterns in Figures 1 and 11c. Each output is composed of a single topological
component.

Decorative patterns have been a core component of man-made objects. The desired patterns
should be aesthetically pleasing while structurally sound. Due to high repetitions and demands in
aesthetics and structures, such patterns are often too tedious for manual design from scratch. Thus,
significant research efforts have been devoted to automate the generation of such patterns.

Generating patterns with desired combination of aesthetic appearances and physical structures
remains a challenging problem. Data-driven methods such as [Chen et al. 2017, 2016; Dumas et al.
2015; Martínez et al. 2015; Zhou et al. 2014] can consume significant computation to generate large
or complex patterns, and allow user customization only indirectly through input exemplars and
output boundary conditions. The interface in [Zehnder et al. 2016] provides interactive user control
but mainly for structural instead of artistic reasons.

We propose a pattern generation method that is efficient in computation, flexible for user design,
and produces outputs satisfying both aesthetic and structural requirements. For the latter we
focus on the topological constraint [Zhou et al. 2014] as it is one of the most important structural
properties: objects made of disconnected components will simply fall apart.
Our key idea is to apply tile-based methodology [Lagae et al. 2008] to design patterned tiles

and fill them into the output domains to satisfy the appearance and structure requirements. As a
pre-process, we generate a tile set with desired patterns, and designate tiling rules so that only
tiles with compatible boundary conditions can be adjacent to one another [Cohen et al. 2003]. At

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

https://doi.org/10.1145/3203204

Tile-based Pattern Design with Topology Control 23:3

run-time, we assemble these tiles into the target domain observing the tiling rules and topological
constraints. Unlike prior methods [Dumas et al. 2015; Martínez et al. 2015; Zhou et al. 2014] that
compute the outputs from scratch which often incurs heavy computation, pre-computed tiles can
be quickly combined to form large outputs [Panetta et al. 2015; Schumacher et al. 2015]. Meanwhile,
users can fully control the output appearances via the tile sets.
On the synthesis side, a direct tiling method might take a long time to meet the topological

constraints, especially when the required number of tiles is large or the pattern has complex
topology. Specifically, convergence is more achievable for 1D tiling [Zhou et al. 2014], but excessive
backtracking can happen for 2D or higher dimensions. To resolve this issue, we have designed a
solver based on a hierarchical ordering of the tiling process. Our key observation is that, under
topological constraints, it is faster to converge locally with fewer tiles. Thus, we generate the result
following a hierarchical ordering producing local results of gradually increasing sizes. Each larger
region in a higher hierarchy is composed from smaller sub-regions in lower hierarchies, until
reaching a minimal sub-region size (typically 4 × 4 tiles).

On the analysis side, we provide an automatic method to construct 1D tile sets from exemplar
patterns and a user interface for manual authoring of 1D and 2D tile sets. Even though prior methods
exist for automatic tile construction [Lagae et al. 2008], the focus has been on point distributions
and image textures. Producing tile sets with vector patterns remains an open problem. Furthermore,
even though user interfaces abound for pattern design (e.g. Adobe Illustrator), they target direct
outputs instead of source tiles. Our user interface aims to bridge this gap. A key difference between
traditional and our user interface is that strokes drawn near tile boundaries have to be compatible
across all tiles with matching boundaries. To help users draw, our UI provides features such as
hints and automatic corrections. Users can combine automatic corrections and manual edits for the
right balance between workload and control.

We demonstrate a variety of patterns generated by our method over target domains with different
topological and geometrical properties. We have conducted a pilot user study to evaluate and
improve our design interface. We believe tile-based pattern design is a fruitful but under-explored
direction, and hope our work can trigger potential future works.

In sum, the contributions of this paper include:

• The idea of employing tiles to design vector patterns with controllable appearance and
structure;

• A synthesis method to generate output patterns with desired quality, speed, and topology
from input tile sets;

• An interface design to help manually author patterns with intended aesthetic design and
structural properties;

• A prototype system evaluated by a formative user study and manufactured outputs.

2 PREVIOUS WORK
Rapid manufacturing. Rapid manufacturing has gained significant progress in various aspects.

Ourmethod relates to those generating repetitive patternswith printable topological andmechanical
properties [Chen et al. 2017, 2016; Dumas et al. 2015; Martínez et al. 2015; Panetta et al. 2015;
Schumacher et al. 2015; Zehnder et al. 2016; Zhou et al. 2014]. These prior works mainly focus on
fully automatic computation and provide user controls for structural instead of artistic purposes.
Thus, instead of focusing on fully automatic computation, we recognize the importance of involving
human decisions in the design process [Iarussi et al. 2015; Yoshida et al. 2015; Zehnder et al. 2016],
and have designed corresponding user interfaces and fast methods for interactive authoring and
generation of manufacturable patterns.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

23:4 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

Pattern generation. Pattern design and synthesis has a long history in computer graphics, with
predominating methods based on procedural [Ebert et al. 2002; Lagae et al. 2010] and data driven
[Wei et al. 2009] principles. These methods have also been adopted for interactive design and
generation of repetitive patterns [Kazi et al. 2014a,b; Lu et al. 2014; Xing et al. 2014].

Tiling. Tiling has been shown as a promising methodology for efficient pattern generation.
Intricate patterns can emerge as a combination of overall tiling structures [Grünbaum and Shephard
1986; Kaplan 2005; Kaplan and Salesin 2004] and content within individual tiles [Cohen et al. 2003;
Guérin et al. 2016; Kopf et al. 2006; Lagae et al. 2008; Merrell 2007; Wachtel et al. 2014; Wei 2004;
Yeh et al. 2013].

Existing methods either focus on automatic generation of image texture tiles or specialized
procedures for certain patterns. We aim to bridge this gap by providing tools and methods to
produce general structured vector tile patterns considering both individual tile content and overall
tiling structures.

3 METHOD
For clarity of presentation, we describe our method using Wang tiles over 2D planar domains
[Cohen et al. 2003; Lagae and Dutré 2006; Wei 2004]. Our methodology could be orthogonally
combined with other tile types (e.g. [Ostromoukhov 2007; Ostromoukhov et al. 2004; Wachtel et al.
2014]) and output domains (e.g. [Fu and Leung 2005; Lu et al. 2007; Tarini et al. 2004]).

3.1 Representation

(a) tile set

1

1

1

1
0

1

1 1

2

2 2

1

111

1

0, 1

(b) topology information

1

111

1

0, 1 +
111

1

=

2 2

2

1

2

22

0, 1

(c) combined topology

(d) tiled output with size 64 × 64

Fig. 3. Tile representation. (a) is the input tile set from [Wei 2004] with edge color visualization. (b) denotes
topological symbols with various tile ensembles, including numbered boundary components (in black texts)
and number of internal components and holes (in white texts). (c) exemplifies combining two ensembles into
one. (d) shows a sample output with one connected topological component.

Appearance. A Wang tile set is a collection of square tiles with interior patterns [Cohen et al.
2003]. Each tile edge is assigned an id, often visualized by colors as in Figure 3a. To tile a given

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

Tile-based Pattern Design with Topology Control 23:5

output domain, there can be no gaps or overlaps among tiles, and only tiles with identical edge ids
can be adjacent to each other. By placing continuous patterns across shared edge ids in the input tile
set, this rule can ensure continuous patterns in the output. The design parameters include number
of ids for each vertical/horizontal edge and number of different tiles for each edge combination. For
placing tiles in a raster-scan order, it suffices to have at least one tile for each north-west edge color
combination [Cohen et al. 2003], although more options can increase output pattern diversity. A
complete tile set with all possible edge combinations, as demonstrated in [Wei 2004], can facilitate
order-independent random access for GPU texturing. Further variations such as corner tiling are
discussed [Lagae and Dutré 2006].

We represent all patterns in vector form. If the input exemplar is in rasterized form, we vectorize
it first.

Topology. In addition to the aforementioned tiling rules for pattern appearance, we also encode
topology information for each tile ensemble, which consists of a single connected set of tile(s) as
exemplified in Figure 3b. These include: (1) boundary descriptor to indicate the distinctive topological
component(s) within a tile ensemble that also touch its boundary with an open portal, (2) interior
descriptor to indicate the number of internal components and holes which do not touch the ensemble
boundary.
The boundary and interior descriptors contain all relevant topological information of a tile

ensemble, and can be considered as a multi-dimensional extension of the 1D topology descriptor in
[Zhou et al. 2014]. When merging multiple tile ensembles into a single one, simple rules can be
devised to compute the joint descriptors. Specifically, we update the boundary descriptors of the
merged components and the interior descriptor for the number of components and holes that do
not touch the boundary. See Figure 3c for an example. This paves the foundation for our synthesis
algorithm.

3.2 Synthesis

X X O
Fig. 4. Basic tiling using the input from Figure 3a to tile a 4 × 4 output. The output tiling has to obey the
traditional Wang tiling process, for which adjacent tiles must have identical edge colors. A counter example is
shown on the left. The synthesis algorithm also keeps track of the current output topology, and immediately
backtracks when it becomes infeasible, such as the middle case (2 disjoint components) when we require the
output to contain a single connected component. A valid output is shown on the right.

Basic tiling. Given an input tile set, it can be used to tile an output domain by simply adding
one tile ensemble at a time. A simple approach for a rectangular output domain is to add tiles one

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

23:6 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

00 01

02 03

10 11

12 13

20 21

22 23

30 31

32 33

0 1

2 3

Fig. 5. Hierarchical tiling process. Starting from an output domain (left), we first divide it into 4 quadrants
and synthesize them in the order as indicated by the numbers (middle). We can repeat this process recursively
for another level (right) until each subdivided tile has small enough size for basic tiling.

(a) 00 (b) 01 (c) 12

Fig. 6. Hierarchical tiling example. Following the illustration in Figure 5, here we show 3 cases synthesizing
the corresponding tile ensembles in 00 (a), 01 (b), and 12 (c). Each ensemble is produced via a 4 × 4 basic
tiling. In (b), ensemble 01 is synthesized so that its left boundary is compatible with the right boundary of
ensemble 00. Similarly in (c), ensemble 12 is synthesized so that its left/top boundary is compatible with the
right/bottom boundary of ensemble 03/10.

by one in a scanline order [Cohen et al. 2003], but other variations can be easily devised, such as
using a hash function for on-demand random access on a GPU [Wei 2004]. The only modification
required is to update the combined topological information as in Section 3.1.
In the end of the tiling process, if the output ensemble satisfies the topological constraints (e.g.

1 connected component without any hole), we find our solution. If not, we backtrack similar to
[Zhou et al. 2014]. We also backtrack immediately when the current ensemble is not possible to
meet the topology constraint, e.g. already contains more holes than allowed. Examples are shown
in Figure 4. This approach suffices for domains containing a small number of tiles, but might take
long time to converge for large domains or complex patterns.

Hierarchical tiling. We increase convergence rate of the basic tiling via a hierarchical method:
synthesize groups of tiles from smaller to larger sizes, and for each level/resolution use only tiles at
the immediate lower level with the next smaller sizes. The intuition is that it is easier and faster to
synthesize a smaller group of tiles satisfying specific topological constraints.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

Tile-based Pattern Design with Topology Control 23:7

Specifically, we perform the hierarchical tiling in a recursive fashion. Starting with the entire
output domain; if it is small enough (e.g. no larger than 4 × 4), we perform basic tiling. Otherwise,
we partition the output domain into equal sub-regions by splitting each dimension in the middle,
and repeat the same process for each sub-region. The process is illustrated and exemplified in
Figures 5 and 6. We enforce the same topological constraints for each sub-region as for the whole
output, e.g. one connected component as the most common application scenario. This greatly
reduces the amount of backtracking for large/complex outputs, but also makes the output more
likely to contain verbatim repetitions than the basic tiling, for which the same sub-regions can
have arbitrary topological structures. Thus, we allow users to choose the smallest sub-region size
(to avoid further partition) for trade-off between quality and speed.

We have noticed that this hierarchical tiling performs best with complete input tile sets, i.e. those
with all possible edge combinations of tiles [Wei 2004].

3.3 Analysis
There are knownmethods to construct image texture tile sets via texture synthesis [Cohen et al. 2003;
Kopf et al. 2006; Wei 2004]. However, no analogous solution exists for vector patterns consisting
of general geometry curves and shapes. Similar to tile textures, the goal is to ensure that the tile
patterns represent the input exemplars (as measured by bidirectional similarity [Simakov et al.
2008; Wei et al. 2008]), and are consistent across matching tile boundaries. In addition, the tile set
should be able to produce outputs with desired topological structures.

(a) input pattern
(b) sample tiles

Fig. 7. 1D tile set construction example. (a) the original pattern with topology changes (black lines) and tile
boundaries (color lines). (b) a few constructed tiles.

In the 1D case, we extend [Zhou et al. 2014] to construct tile sets containing vector patterns.
Their approach synthesizes a 1D pattern by solving for an optimal sequence of pieces copied from
the input, using dynamic programming while tracking the output topology. To construct each tile
of a 1D tile-set, we perform the same process, subject to tile edge boundary constraints. Specifically,
we extend the “closed-curve” method in [Zhou et al. 2014], synthesizing in between the different
1D tile boundaries. For example, after the orange-green tile in Figure 7 is built, the red-orange
tile can be constructed by starting from the red side and gradually sweeping to the orange side
by using the existing orange-green tile as a fixed constraint. Each tile is thus a 1D sequence of
pieces from the exemplar, starting and ending on one of the selected edges constraints (as shown
in Figure 7b). When a tile has the same colored edges (e.g. red-red), our method reduces to the
closed-curve method in [Zhou et al. 2014]. These edge colors can be chosen randomly or specified
by the user. To improve output quality and convergence speed, we iterate multiple combinations of
1D sweep directions, and produce multiple intermediate outputs at each step.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

23:8 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

Fig. 8. User interface for tile-set authoring. The UI consists of a main canvas (middle), a tools panel (left
and top), and a preview panel (right). The canvas is overlaid over a complete tile set [Wei 2004], upon which
the users can draw directly. The UI provides hints (visualized as shadows) and automatically snaps patterns
near the tile boundaries to help ensure continuity. Users can also click on the preview panel to see possible
outputs. Please refer to the accompanying video for live actions.

After a tile set is constructed, the users can preview several tiling outputs. If they are not satisfied
with the appearance or topology properties, they can restart the process with different random
seeds. Results are shown in Figure 9.

The aforementioned process can be extended to synthesize 2D tile sets. A first pass synthesizes a
1D tile set, under the additional constraint that each tile shares the same top/bottom edges (e.g. the
horizontal red/green constraints in Figure 4). However, we have found that this approach might
not produce compelling results in practice, or fails to find solutions, due to over-constraining the
synthesis process. This motivated the need for a user interface to help artists directly design high
quality tile-sets (Section 4).

4 AUTHORING
To produce patterns that are beyond automatic construction, we provide a simple user interface to
manually author tiles (Figure 8). Users can start from an empty canvas, or load an existing tile set
(e.g. computed by our automatic method in Section 3.3). They can draw new strokes, copy-paste
vector patterns from other sources, or modify existing patterns. As a major difference between
conventional and our drawing UI, every stroke drawn near a tile boundary has to be consistent
across all other tiles with matching boundaries. To help ensure quality, consistency, and usability,
our UI provides hints [Lee et al. 2011; Xing et al. 2014] for patterns drawn near the tile boundaries
and automatically corrects patterns crossing tile boundaries.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

Tile-based Pattern Design with Topology Control 23:9

Hint. To help users draw, our UI displays existing patterns near tile boundaries as hints at all
other tile boundaries with matching tile edges [Cohen et al. 2003]. The hints are drawn like shadows
[Lee et al. 2011; Xing et al. 2014, 2015] with full opacity at the tile edges and gradually fade away
towards the tile centers to reflect the strength of the tiling constraints. Specifically, patterns crossing
tile boundaries need to be compatible with one another while patterns at tile interiors can have
more freedom to be distinct.
These hints are automatically updated in sync with user editing. Users can tune the shadow

intensity depending on their preferences.

Correction. To maintain pattern continuity, such as G0 for stroke positions and G1 for stroke
directions, our UI can automatically snap or correct the patterns drawn near tile boundaries
[Fernquist et al. 2011] via geometry deformations [Zhou et al. 2014]. Users can accept, ignore, or
edit these auto corrected results similar to [Xing et al. 2014, 2015].

Preview. The tile set under the main canvas already provides a valid albeit small sample tiling
output. To help visualizing larger outputs, our system can quickly generate different outcomes via
our fast synthesis method. Users can edit the outputs directly to see the changes automatically
propagated back to the source tile sets and matching tiles in the current output.

5 RESULTS

(a) input (b) tile set (auto analysis) (c) output from (b) with toroidal boundary condition

(d) tile set (user drawn)

(e) output from (d)

Fig. 9. 1D results. The analysis timings are 5.2s, 7.1s, and 2.6s. The synthesis timings are below milliseconds.

Figure 9 shows 1D results with both automatically analyzed and manually drawn tile sets.
Figures 1, 10 and 11 show sample 2D results produced by our system. The tile sets are manually
drawn by users via our authoring interface. The outputs are produced by our hierarchical tiling
method with minimal threshold 4×4 tiles. As shown, our method can be applied for simple repetitive
patterns that are suitable for automatic analysis, as well as more complicated structural ornamental
patterns that are more suitable for manual authoring.
Patterns produced by our method can also be manufactured in various fashions, such as laser

cutting or paper printing, as shown in Figures 2 and 12. In particular, in addition to tiling a
rectangular 2D planar domain, our method can also tile any subset of a 2D domain, such as faces
of a cube or poly-cube [Fu and Leung 2005; Tarini et al. 2004]. All we need to do is to ensure
compatible Wang tile edges across all tiles adjacent not only in the 2D representation but also the
3D structure (e.g. an assembled box).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

23:10 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

(a) bubbles

(b) fortress

(c) bamboo garden

Fig. 10. 2D results. Within each group are the input tile set and a sample output tiling with size 16 × 8.

5.1 User Study
We have conducted a formative user study to evaluate our user interface and obtain feedbacks to
improve its design and functionality.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

Tile-based Pattern Design with Topology Control 23:11

(a) lotus

(b) flowers

(c) oriental window

Fig. 11. Continuation from Figure 10.

Procedure. We have recruited one experienced vector artist familiar with Adobe Illustrator and
one novice user without much prior drawing experience. All tasks were conducted on a laptop
with a Wacom tablet.

The study began with a warm-up session to introduce the overall system and user interface to
the participants. We described various functionalities, and let the participants explore the interface
and design simple tile patterns.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

23:12 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

(a) flowers (b) oriental window (c) bubbles (d) bamboo garden

Fig. 12. Sample output patterns ready for paper printing, cutting, and box folding. Each pattern is tiled over 6
cube faces with continuous appearance and structure. Extra pads are added at face borders for gluing.

The next step is to evaluate how participants can use our system to design target patterns.
Specifically, the participants were instructed to draw tiles that can produce outcomes in singly-
connected components with patterns inspired by those targets.

The final step is to see how our system can be used for open-ended creation of tile patterns. We
encouraged the participants to draw their desired tile patterns that can produce single-component
outputs for manufacturing. They were encouraged to look up interesting patterns online and
through design books if necessary. To allow enough time to get familiar with our UI and to create
content, we let the participants play with our prototype for a few days instead of just hours or
minutes as common in traditional user study.

Outcome. Overall, the participants commented that drawing tiles is very different from drawing
traditional vector patterns due to the boundary and topology constraints. This difference took some
time to adjust, but the participants managed to produce the desired patterns after gaining sufficient
familiarity with our user interface.

Their feedbacks have helped us to improve the system in various aspects, as follows.
The auto-correct function can sometimes interfere with the drawing of small, detailed strokes.

Our UI thus allows the tuning of the auto-correction strength to be proportional to the length of the
strokes. Users can also turn on or off the auto correct depending on their preference and drawing
progress.

Displaying tile boundaries under the main canvas can sometimes lead to the formation of patterns
with obvious tiling nature, as users might feel inclined to follow the boundaries. We thus allow
users to turn on or off the visualization of the tile boundaries, and instead rely on the hints to guide
the drawing process.

In our initial design we visualized portals [Zhou et al. 2014] at tile borders where patterns cross.
Even though this provides some guidance, the participants commented that it is still hard for them
to anticipate how the newly drawn patterns will connect with the existing ones. That inspired us to
provide hints visualized as shadows, which participants have found to greatly help their authoring
process.

5.2 Performance
We measure the performance statistics of our method in Table 1.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

Tile-based Pattern Design with Topology Control 23:13

Manual authoring time ranges fromminutes to hours depending on the complexity of the patterns
and the experiences and skills of the users. All these were self-reported by the creators from their
first attempts to draw the corresponding patterns. From their feedbacks, the majority of the time
was spent on iterative trials-and-errors to obtain the best design balance between appearance and
structure. Repeating the same target patterns after the first trial usually reduced the total authoring
time significantly by 50% ∼ 75%. This is evident by comparing the UI segment in the accompany
video, which was recorded on a second trial of the pattern in Figure 10a, and thus took much less
time than the first trial.

The run-time tiling usually runs in the range of tens of milliseconds. From our experiments with
varying output sizes, the hierarchical tiling algorithm has roughly linear complexity, whereas the
basic tiling algorithm tends to have exponential complexity and might not terminate at all in some
situations.

Table 1. Timing measurements.

authoring tiling
basic hierarchical

Figure 1 30m 30ms 17ms
Figure 10a 20m 22ms 11ms
Figure 10b 30m 1.5s 95ms
Figure 10c 2h 25ms 14ms
Figure 11a 1h 21ms 11ms
Figure 11b 2h 19ms 17ms
Figure 11c 4h 37ms 25ms

❳❳❳❳❳❳❳❳❳tiling
Figure 3d 82 102 122 142 162 642

basic 67ms 323ms 2.9s 49s 263s ∞

hierarchical <10ms 77ms

6 LIMITATIONS AND FUTUREWORK
We have presented a tile-based pattern design method that can produce outputs with desired
appearance patterns and topology structures suitable for rapid manufacturing.

As future work, one could attempt to extend other topology control methods such as [Chen et al.
2016] for tile construction from elements.
The current tile sets have one tile per edge combination, even though our method can support

multiple tiles per edge combination which tends to produce more diverse and less repetitive patterns.
Within the scope of this paper we focus onWang tiles, but the exact tile type should be orthogonal

to our basic methodology. A potential future direction is to explore other types of tiles, such as
rhombs [Ostromoukhov et al. 2004], polyominoes [Ostromoukhov 2007], and tri-hex [Wachtel et al.
2014], that may lead to better quality or more interesting patterns.

We have applied our tiling method over 2D planes and cube faces, but it can also be applied for
other 2D domains such as poly-cube faces [Fu and Leung 2005; Tarini et al. 2004]. Extensions to
higher dimensions are also possible, such as volumes [Lu et al. 2007], for which tiling can save even
more memory and computation.
Our hierarchical tiling method applies the same topological constraints for each sub-region,

which restricts the output topology to be self-recursive, such as containing no holes or consisting
of a single connected component. Even though these suffice for almost all practical usage scenarios,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

23:14 Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre

we would like to investigate other acceleration methods that can allow more flexible topological
choices.
Our current method considers only topology but should be largely orthogonal to and can thus

be combined with other structural properties such as stress and compliance [Martínez et al. 2015;
Umetani and Schmidt 2013; Zhou et al. 2013].

For very large or complex output patterns, our tiling method can generate the individual pieces
and let users assemble them together. A potential future direction is to partition the printing process
[Luo et al. 2012] tailored for repetitive patterns.
Our current UI prototype is implemented as a standalone system. We plan to integrate it as a

plugin for common tools such as GIMP and Adobe Illustrator to broaden the potential user base.
We also plan to conduct more user studies along with our prototype development.

Even though tile-based methods have been a core component in computer graphics [Lagae et al.
2008], we believe tile-based design for vector patterns remains largely unexplored. We hope our
work can trigger future works in this direction with potential applications in graphics, design, and
manufacturing.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insightful comments. This work has
been supported by Hong Kong RGC (GRF 17202415) and ERC grant ShapeForge (StG-2012-307877).

REFERENCES
Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and Wenping Wang. 2017. Fabricable Tile Decors.

ACM Trans. Graph. 36, 6, Article 175 (Nov. 2017), 15 pages. https://doi.org/10.1145/3130800.3130817
Weikai Chen, Xiaolong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping Wang. 2016. Synthesis of Filigrees for

Digital Fabrication. ACM Trans. Graph. 35, 4, Article 98 (July 2016), 13 pages. https://doi.org/10.1145/2897824.2925911
Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. 2003. Wang Tiles for Image and Texture Generation.

ACM Trans. Graph. 22, 3 (July 2003), 287–294. https://doi.org/10.1145/882262.882265
Jérémie Dumas, An Lu, Sylvain Lefebvre, Jun Wu, and Christian Dick. 2015. By-example Synthesis of Structurally Sound

Patterns. ACM Trans. Graph. 34, 4, Article 137 (July 2015), 12 pages. https://doi.org/10.1145/2766984
David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley. 2002. Texturing and Modeling: A

Procedural Approach (3rd ed.). Morgan Kaufmann Publishers Inc.
Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice. 2011. Sketch-sketch Revolution: An Engaging Tutorial System

for Guided Sketching and Application Learning. In UIST ’11. 373–382. https://doi.org/10.1145/2047196.2047245
Chi-Wing Fu and Man-Kang Leung. 2005. Texture Tiling on Arbitrary Topological Surfaces Using Wang Tiles. In EGSR ’05.

99–104. https://doi.org/10.2312/EGWR/EGSR05/099-104
Branko Grünbaum and G C Shephard. 1986. Tilings and Patterns. W. H. Freeman & Co., New York, NY, USA.
Eric Guérin, Eric Galin, François Grosbellet, Adrien Peytavie, and Jean-David Génevaux. 2016. Efficient modeling of

entangled details for natural scenes. Computer Graphics Forum 35, 7 (2016), 257–267. https://doi.org/10.1111/cgf.13023
Emmanuel Iarussi, Wilmot Li, and Adrien Bousseau. 2015. WrapIt: Computer-assisted Crafting of Wire Wrapped Jewelry.

ACM Trans. Graph. 34, 6, Article 221 (Oct. 2015), 8 pages. https://doi.org/10.1145/2816795.2818118
Craig S. Kaplan. 2005. Islamic Star Patterns from Polygons in Contact. In GI ’05. 177–185. http://dl.acm.org/citation.cfm?id=

1089508.1089538
Craig S. Kaplan and David H. Salesin. 2004. Islamic Star Patterns in Absolute Geometry. ACM Trans. Graph. 23, 2 (April

2004), 97–119. https://doi.org/10.1145/990002.990003
Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice. 2014a. Kitty: Sketching Dynamic and

Interactive Illustrations. In UIST ’14. 395–405. https://doi.org/10.1145/2642918.2647375
Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George Fitzmaurice. 2014b. Draco: Bringing

Life to Illustrations with Kinetic Textures. In CHI ’14. 351–360. https://doi.org/10.1145/2556288.2556987
Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive Wang Tiles for Real-time Blue Noise.

ACM Trans. Graph. 25, 3 (July 2006), 509–518. https://doi.org/10.1145/1141911.1141916
Ares Lagae and Philip Dutré. 2006. An Alternative for Wang Tiles: Colored Edges Versus Colored Corners. ACM Trans.

Graph. 25, 4 (Oct. 2006), 1442–1459. https://doi.org/10.1145/1183287.1183296

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

https://doi.org/10.1145/3130800.3130817
https://doi.org/10.1145/2897824.2925911
https://doi.org/10.1145/882262.882265
https://doi.org/10.1145/2766984
https://doi.org/10.1145/2047196.2047245
https://doi.org/10.2312/EGWR/EGSR05/099-104
https://doi.org/10.1111/cgf.13023
https://doi.org/10.1145/2816795.2818118
http://dl.acm.org/citation.cfm?id=1089508.1089538
http://dl.acm.org/citation.cfm?id=1089508.1089538
https://doi.org/10.1145/990002.990003
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2556288.2556987
https://doi.org/10.1145/1141911.1141916
https://doi.org/10.1145/1183287.1183296

Tile-based Pattern Design with Topology Control 23:15

Ares Lagae, Craig S. Kaplan, Chi-Wing Fu, Victor Ostromoukhov, and Oliver Deussen. 2008. Tile-based Methods for
Interactive Applications. In SIGGRAPH ’08 Classes. Article 93, 267 pages. https://doi.org/10.1145/1401132.1401254

Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George Drettakis, D.S. Ebert, J.P. Lewis, Ken Perlin, and Matthias
Zwicker. 2010. State of the Art in Procedural Noise Functions. In Eurographics ’10 State of the Art Report. http:
//www.eurographics2010.se/program/stars/,http://www.eg.org/EG/DL/conf/EG2009/stars

Yong Jae Lee, C. Lawrence Zitnick, and Michael F. Cohen. 2011. ShadowDraw: Real-time User Guidance for Freehand
Drawing. ACM Trans. Graph. 30, 4, Article 27 (July 2011), 10 pages. https://doi.org/10.1145/2010324.1964922

Aidong Lu, David S. Ebert, Wei Qiao, Martin Kraus, and Benjamin Mora. 2007. Volume Illustration Using Wang Cubes.
ACM Trans. Graph. 26, 2, Article 11 (June 2007). https://doi.org/10.1145/1243980.1243985

Jingwan Lu, Connelly Barnes, Connie Wan, Paul Asente, Radomir Mech, and Adam Finkelstein. 2014. DecoBrush: Drawing
Structured Decorative Patterns by Example. ACM Trans. Graph. 33, 4, Article 90 (July 2014), 9 pages. https://doi.org/10.
1145/2601097.2601190

Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper: Partitioning Models into 3D-printable
Parts. ACM Trans. Graph. 31, 6, Article 129 (Nov. 2012), 9 pages. https://doi.org/10.1145/2366145.2366148

Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure and Appearance Optimization for
Controllable Shape Design. ACM Trans. Graph. 34, 6, Article 229 (Oct. 2015), 11 pages. https://doi.org/10.1145/2816795.
2818101

Paul Merrell. 2007. Example-based Model Synthesis. In I3D ’07. 105–112. https://doi.org/10.1145/1230100.1230119
Victor Ostromoukhov. 2007. Sampling with Polyominoes. ACM Trans. Graph. 26, 3, Article 78 (July 2007). https://doi.org/10.

1145/1276377.1276475
Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast Hierarchical Importance Sampling with Blue

Noise Properties. ACM Trans. Graph. 23, 3 (Aug. 2004), 488–495. https://doi.org/10.1145/1015706.1015750
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for

Additive Fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 12 pages. https://doi.org/10.1145/2766937
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to

Control Elasticity in 3D Printing. ACMTrans. Graph. 34, 4, Article 136 (July 2015), 13 pages. https://doi.org/10.1145/2766926
Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. 2008. Summarizing visual data using bidirectional similarity.

In CVPR. 1–8.
Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. PolyCube-Maps. ACM Trans. Graph. 23, 3 (Aug.

2004), 853–860. https://doi.org/10.1145/1015706.1015810
Nobuyuki Umetani and Ryan Schmidt. 2013. Cross-sectional Structural Analysis for 3D Printing Optimization. In SIGGRAPH

Asia 2013 Technical Briefs (SA ’13). Article 5, 4 pages. https://doi.org/10.1145/2542355.2542361
Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh, Gaël Cathelin, Fernando de Goes,

Mathieu Desbrun, and Victor Ostromoukhov. 2014. Fast Tile-based Adaptive Sampling with User-specified Fourier
Spectra. ACM Trans. Graph. 33, 4, Article 56 (July 2014), 11 pages. https://doi.org/10.1145/2601097.2601107

Li-Yi Wei. 2004. Tile-based Texture Mapping on Graphics Hardware. In HWWS ’04. 55–63. https://doi.org/10.1145/1058129.
1058138

Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2008. Inverse Texture Synthesis.
ACM Trans. Graph. 27, 3, Article 52 (Aug. 2008), 9 pages. https://doi.org/10.1145/1360612.1360651

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the Art in Example-based Texture Synthesis. In
Eurographics ’09 State of the Art Report. 93–117.

Jun Xing, Hsiang-Ting Chen, and Li-Yi Wei. 2014. Autocomplete Painting Repetitions. ACM Trans. Graph. 33, 6, Article 172
(Nov. 2014), 11 pages. https://doi.org/10.1145/2661229.2661247

Jun Xing, Li-Yi Wei, Takaaki Shiratori, and Koji Yatani. 2015. Autocomplete Hand-drawn Animations. ACM Trans. Graph.
34, 6, Article 169 (Oct. 2015), 11 pages. https://doi.org/10.1145/2816795.2818079

Yi-Ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew Fisher, and Pat Hanrahan. 2013. Synthesis of Tiled Patterns Using
Factor Graphs. ACM Trans. Graph. 32, 1, Article 3 (Feb. 2013), 13 pages. https://doi.org/10.1145/2421636.2421639

Hironori Yoshida, Takeo Igarashi, Yusuke Obuchi, Yosuke Takami, Jun Sato, Mika Araki, Masaaki Miki, Kosuke Nagata,
Kazuhide Sakai, and Syunsuke Igarashi. 2015. Architecture-scale Human-assisted Additive Manufacturing. ACM Trans.
Graph. 34, 4, Article 88 (July 2015), 8 pages. https://doi.org/10.1145/2766951

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-sound Ornamental Curve Networks.
ACM Trans. Graph. 35, 4, Article 99 (July 2016), 10 pages. https://doi.org/10.1145/2897824.2925888

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural Analysis. ACM Trans. Graph. 32, 4, Article 137
(July 2013), 12 pages. https://doi.org/10.1145/2461912.2461967

Shizhe Zhou, Changyun Jiang, and Sylvain Lefebvre. 2014. Topology-constrained Synthesis of Vector Patterns. ACM Trans.
Graph. 33, 6, Article 215 (Nov. 2014), 11 pages. https://doi.org/10.1145/2661229.2661238

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 23. Publication date: May 2018.

https://doi.org/10.1145/1401132.1401254
http://www.eurographics2010.se/program/stars/,http://www.eg.org/EG/DL/conf/EG2009/stars
http://www.eurographics2010.se/program/stars/,http://www.eg.org/EG/DL/conf/EG2009/stars
https://doi.org/10.1145/2010324.1964922
https://doi.org/10.1145/1243980.1243985
https://doi.org/10.1145/2601097.2601190
https://doi.org/10.1145/2601097.2601190
https://doi.org/10.1145/2366145.2366148
https://doi.org/10.1145/2816795.2818101
https://doi.org/10.1145/2816795.2818101
https://doi.org/10.1145/1230100.1230119
https://doi.org/10.1145/1276377.1276475
https://doi.org/10.1145/1276377.1276475
https://doi.org/10.1145/1015706.1015750
https://doi.org/10.1145/2766937
https://doi.org/10.1145/2766926
https://doi.org/10.1145/1015706.1015810
https://doi.org/10.1145/2542355.2542361
https://doi.org/10.1145/2601097.2601107
https://doi.org/10.1145/1058129.1058138
https://doi.org/10.1145/1058129.1058138
https://doi.org/10.1145/1360612.1360651
https://doi.org/10.1145/2661229.2661247
https://doi.org/10.1145/2816795.2818079
https://doi.org/10.1145/2421636.2421639
https://doi.org/10.1145/2766951
https://doi.org/10.1145/2897824.2925888
https://doi.org/10.1145/2461912.2461967
https://doi.org/10.1145/2661229.2661238

	Abstract
	1 Introduction
	2 Previous Work
	3 Method
	3.1 Representation
	3.2 Synthesis
	3.3 Analysis

	4 Authoring
	5 Results
	5.1 User Study
	5.2 Performance

	6 Limitations and Future Work
	Acknowledgments
	References

