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Abstract—The appeal and clear operational and economic ben-

efits of anycast to service providers have motivated a number of

recent experimental studies on its potential performance impact

for end users. For CDNs on mobile networks, in particular,

anycast provides a simpler alternative to existing routing systems

challenged by a growing, complex, and commonly opaque cellular

infrastructure. This paper presents the first analysis of anycast

performance for mobile users. In particular, our evaluation

focuses on two distinct anycast services, both providing part of

the DNS Root zone and together covering all major geographical

regions. Our results show that mobile clients tend to be routed

to suboptimal replicas in terms of geographical distance, more

frequently while on a cellular connection than on WiFi, with

a significant impact on latency. We find that this is not simply

an issue of lacking better alternatives, and that the problem

is not specific to particular geographic areas or autonomous

systems. We close with a first analysis of the root causes of this

phenomenon and describe some of the major classes of anycast

anomalies revealed during our study, additionally including a

systematic approach to automatically detect such anomalies

without any sort of training or annotated measurements. We

release our datasets to the networking community.

I. INTRODUCTION

The impressive growth in mobile devices and use has led

to an unprecedented amount of cellular traffic. The number of

mobile subscriptions has grown rapidly in just a few years,

surpassing 7.8 billion in the third quarter of 2017 [1]. Today,

users spend most of their time browsing on their mobile

phones, more than on any other device. In the United States,

for instance, the average smartphone user spends 2x−3x more

hours (87 hours per month) on her mobile device than she

does on desktop machines (34 hours per month) [2].

Most of this content is delivered to end users by content

delivery networks (CDNs). CDNs deploy servers around the

world and redirect clients to nearby replicas to improve

performance and reliability. The process of replica selection –

the mapping of each client to a close replica – is key to CDN

performance. Most commonly, it has relied on a DNS-based

approach pioneered by Akamai.

Traditional replica selection systems, however, are being

challenged by the rapid growth, increased complexity, and

common opacity of cellular infrastructure [3]. Anycast offers

mobile CDNs an alternative approach.

This work has been carried out while Sarah Wassermann was an MSc.
student at the University of Liège.

With IP anycast, services advertise a single IP address from

many physical locations (anycast sites) and clients’ requests

are directed, based on BGP routing policies, to a “nearby”

replica [4]. The approach is being used for redirecting clients

in a range of applications, from naming (e.g., root servers and

top-level domain resolvers) to content delivery. By letting BGP

control request routes, anycast routing obviates the need for

fine-grained infrastructure or client information. BGP routing

also offers some degree of robustness, adapting to changes

in service or network availability, and allows for some policy

control. The benefits of anycast to service providers have mo-

tivated a number of recent experimental studies on its potential

performance impact for end users. Prior analyses have shown

that anycast routing can be suboptimal [5], unstable [6], [7],

and seemingly chaotic [8], [9], as routing policies have not

only technical motivations, but could be dictated by political or

commercial reasons. Routing changes can silently shift traffic

from one site to another with a consequent loss of shared

state and potential performance impact [10]. Yet, despite the

growing dominance of mobile Internet access, no previous

studies have evaluated the effectiveness of anycast for mobile

users, including its routing behavior and performance.

In this paper, we take a first look at anycast performance

for mobile users. In particular, our evaluation focuses on two

distinct anycast services, K- and F-Root DNS, each providing

part the DNS Root zone and together covering all major

geographical regions. Similarly to previous work [9], [11],

[12], we use the geographic distance as our evaluation metric.

Geographic distance is a useful metric to estimate RTT [13],

and IP-to-location mapping techniques such as GeoPing [14]

and Constraint-Based Geolocation (CBG) [15] rely on the

correlation between network delay and geographic distance.

In the specific case of wireless networks hosting users on the

move, we consider geographic distance to be a more suitable

proximity metric than delay. Indeed, delay is influenced by

multiple factors which can vary greatly, even if the user does

not move much. Note that, while we are interested in the

impact and behavior of delay towards user-requested content,

geographic distance provides a more stable ground truth to

use as baseline for the comparison of measurements. We show

that mobile clients tend to be routed to suboptimal replicas

in terms of geographical distance, more frequently while on

a cellular connection than on WiFi, with a significant impact

on perceived service performance.



In the following section, we provide background on cellular

networks and anycast routing and review prior work. We

describe our methodology and datasets for measuring anycast

routing for mobile end users in Section III, and present our

findings in Section IV. We further investigate the causes

of aberrant anycast behavior for mobile users in Section V

and present a systematic approach to identify such anomalies

in an unsupervised manner through clustering techniques in

Section VI. Finally, we conclude in Section VII.

II. ANYCAST AND MOBILE USERS

Previous efforts have focused on techniques for character-

izing anycast deployment [16], enumerating [17]–[19], and

geolocating servers based on latency measurements [17], [18].

Cicalese et al. [16] presented the first Internet-wide anycast

census and showed that major players in the Internet ecosys-

tem are relying on anycast, even though only a small part of

the IPv4 space has so far been anycasted.

Calder et al. [20] analyzed the performance of anycast in

the Bing CDN. The authors showed that, although anycast

performed well in general, about 20% of the clients were

redirected to a suboptimal replica, with a negative impact on

performance. Kuipers et al. [9] reported a related study on the

performance of the K-Root DNS service using the RIPE Atlas

framework [21]. Like Calder et al., they observed that anycast

was suboptimal for multiple probes with, for instance, 46%

of them being redirected to a suboptimal DNS server, both in

terms of latency and geographical distance. Li and Spring [22]

claimed that the main causes for this behavior are Tier-1 ASes,

which forward almost all requests systematically to the same

replica, irrespectively of the user’s location.

Addressing the flaws of anycast remains a major challenge.

Schmidt et al. [5] analyzed the impact of the number of

anycast sites on the performance of this paradigm in the

DNS infrastructure. The authors concluded that increasing

the number of sites does not solve the suboptimal mapping

observed nor, counterintuitively, reduces clients’ latencies.

In [8], Bellis et al. described their use of RIPE Atlas to detect

and address issues related to F-Root, such as the redirection of

requests to replicas in different continents (e.g., from a probe

in Europe to a server in Atlanta).

Zarifis et al. [23] studied the impact of the Internet topology

and routing on the performance perceived by mobile users, and

revealed that a significant fraction of Internet paths are inflated,

with a non-negligible performance penalty. The authors inves-

tigated the root causes for route inflation and found the lack

of carrier ingress points to be one of the main reasons.

Our work builds on approaches and insights from many of

these past efforts. Yet, to the best of our knowledge, this is the

first work focused on the performance of anycast in mobile

networks.

III. METHODOLOGY AND DATASETS

This section describes our datasets and measurement

methodology for analyzing anycast from mobile devices. We

focus our analysis on two major root DNS services: F-Root

and K-Root. We selected these services since they are both

widely replicated, covering together all geographic areas (with

approximately 60 servers for K-Root and nearly 140 for F-

Root) and both with publicly available site locations and

unicast IP addresses. The latter point is key to let us evaluate

the performance of anycast routing relative to its “optimal” (in

terms of unicast) site location.

We collected active measurements from geographically dis-

tributed clients on both cellular and WiFi networks from

September 2016 to April 2017, using the ALICE engine1.

ALICE conducts mobile network measurements by executing

a small, self-contained experiment script, run approximately

every hour. In each experiment, for each of the two root DNS

services, clients launched ping and traceroute measurements

towards the root server’s anycast address, as well as towards

five unicast addresses of the analyzed DNS service determined

to be the geographically closest to the client. Target unicast

addresses were selected based on the origin country of each

client’s IP address, as reported by whois.

Note that, besides our previous justification for choosing

geographical distance over latency as selection criteria, we

consider the closest unicast replicas in terms of geographical

distance and not latency also due to practical concerns. Indeed,

we cannot know the closest unicast replicas in terms of

latency without flooding the user’s connection with latency

measurements towards all available unicast replicas before

starting every new experiment, which would be impractical

and highly invasive. Moreover, a previous study [9] shows

that geographically distant replicas generally result in poorer

latency, further supporting our methodology.

We collected data from mobile devices while clients were

connected to either WiFi or cellular networks. We thus divide

our data into a set containing experiments launched from

cellular networks (CELL) and another one including the

experiments issued from WiFi (WIFI). As measurements were

collected opportunistically, based on connection availability

and resource usage, the number of experiments in each of

these sets is not the same.

CELL dataset. CELL includes more than 20,000 experi-

ments, issued from 151 different clients. Our cellular users

were scattered across nearly 40 different countries, with 70%

of them located in the United States, Greece, Brazil, and

France. Furthermore, the analyzed clients were hosted in a

range of major ASes, including AS 29247 (GR-Cosmote,

Greece), AS 26599 (Vivo, Brazil), and AS 22394 (Verizon

Wireless, US).

WIFI dataset. WIFI encompasses three times as many

experiments as CELL, issued from 251 clients. Clients were

located in nearly 50 different countries around the world with

70% of them in Greece and the United States. Some of the

most active clients (i.e., those that have launched the most

experiments) were hosted in AS 6799 (OTENET-GR, Greece),

AS 9121 (TTNet, Turkey), and AS 7922 (COMCAST, US).

1http://aqualab.cs.northwestern.edu/projects/261-alice



0 1000 2000 3000 4000

D
client → anycast

 (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
D

F

Cell

WiFi

(a) Distance to K-Root.

0 400 800 1200 1600 2000

D
client → anycast

 (km)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
D

F

Cell

WiFi

(b) Distance to F-Root.

Fig. 1: Travel distance from clients to anycast servers.

A total of 125 clients launched experiments from both

cellular and WiFi networks.

We are making both the CELL and WIFI datasets publicly

available on GitHub2.

IV. FINDINGS AND OBSERVATIONS

In this section, we present key observations from our

analysis of mobile anycast performance. In particular, our

results suggest that mobile clients are most of the time routed

towards suboptimal replicas in terms of geographical distance

(Section IV-A), more frequently while on a cellular connection

than on WiFi, and that the additional distance traveled by re-

quests has a significant impact on performance (Section IV-B).

We analyze the scope of this phenomenon (Section IV-C) and

the existence of better alternatives (Section IV-D).

A. The Travel Distance Problem

Our study is partially motivated by anecdotal evidence of

long geographic distances between mobile clients and their

assigned anycast DNS servers. To characterize these distances,

given that anycast IP addresses cannot be geolocated [24], we

geolocate the penultimate hop on the path from a client to

the anycast server and estimate its location using the Akamai

EdgeScape service3. We use this and the client location to

compute the geographic distance between a client and her as-

signed anycast server. For each experiment, the client recorded

her anonymized geographic location to a 10 km2 area. Figure 1

shows the distribution of these distances, in kilometers, for

both WiFi and cellular users.

Figure 1(a) presents the travel distance between clients

and their K-Root anycast servers (Dclient→anycast). We see a

significant difference between cell and WiFi: Dclient→anycast

is smaller than 4,000 kilometers for approximately 75% of

2https://github.com/SAWassermann/mobile-anycast
3https://www.akamai.com/us/en/products/web-performance
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Fig. 2: Latency from clients to anycast servers.

the experiments carried out on a WiFi network, whereas this

holds for merely 50% of the experiments issued from cellular

clients. While we can observe the same phenomenon for F-

Root on Figure 1(b), the differences are not as striking as for

the K-Root service. The difference in number and geographic

distribution between F- and K-Root services explains the

measured differences in the distances traveled by a client

request on a cellular or WiFi connection. Still, clients on

cellular networks travel farther to their assigned replicas (with

potential latency implications).

B. Impact on Latency

Does the additional distance traveled by users’ requests re-

sult in worse user performance? We evaluate the impact of the

distance between clients and their replicas in terms of latency.

Figure 2 shows the distribution of their latencies. Indeed, the

figure reveals that latencies are higher for the measurements

carried out on cellular networks than for the ones performed

on WiFi. Again, the difference is more pronounced for K-Root

(Figure 2(a)) than for F-root (Figure 2(b)). A comparison of

both figures shows that, while the distribution of latencies is

similar for K-Root and F-Root on WiFi, we see significantly

worse performance for K-Root compared to F-Root on cellular

networks: 90% of the experiments output a RTT lower than

200 milliseconds for F-Root, but only 70% for K-Root DNS.

Other factors beyond distance traveled, such as signal

strength and radio access latency, could result in performance

degradations for clients on cellular networks. To understand

the importance of geographic distance on observed latency,

we look at the correlation between distance and minimum

RTT for cellular measurements. Figure 3, a scatter plot of

this correlation, clearly shows that, while not the only factor,

the distance between cellular clients and their assigned anycast

servers is indeed an important aspect to take into account when

it comes to performance optimization. We observed the same
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behavior for WiFi clients; the graph is not included due to

space constraints.

C. Where Does the Travel Distance Problem Occur?

Is it possible that the observed issues are limited to some

specific geographical regions or a few particularly mismanaged

ASes? To explore this, we now focus our analysis on five

ASes that provide the most measurements for clients in cellular

networks. This leaves us with 2,310 measurements issued from

16 users for K-Root and 1,860 measurements retrieved from

15 mobile clients for F-Root DNS.

Figure 4 presents the distributions of the distances traveled

to anycast servers for clients in these ASes. While we see

large variability within and across ASes, particularly in US-

based networks potentially covering larger geographic areas,

there are no clear patterns to argue for the identified problem

to be a region- or AS-specific issue.

As noted before, F-Root DNS replicas seem to be closer

to their clients, regardless of the network. Indeed, for 80% of

the launched measurements towards F-Root anycast servers,

Dclient→anycast is less than approximately 4,300 kilometers,

while this distance is larger than 8,500 kilometers for 20% of

the measurements issued towards K-Root servers.

D. Do Cellular Clients Have a Closer Option?

Another possible explanation for the long distances would

be that these cellular clients are simply located far away

from all the available replicas. Further analysis shows that

this is not necessarily the case. We compute the distance

between cellular clients and both their assigned anycast server

(Dclient→anycast) and their geographically closest unicast

replica (Dclient→unicast). We compute the additional distance

traveled by anycast as the difference between these two

distances (i.e., Dclient→anycast − Dclient→unicast), which we

denote by δclient.

Figure 5 presents the additional distance traveled by anycast

requests, δclient, for the measurements launched from the five

ASes providing the most measurements for K- and F-Root

DNS. We can easily infer from this graph that our clients

are most of the time routed to a suboptimal replica and that

this issue does not seem to be specific to one AS or region.

Nevertheless, comparing Figures 5(a) and 5(b) leads us to

conclude that anycast routing is significantly worse for K-Root

than for F-Root, even though the mappings for F-Root are far

from optimal.
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Fig. 4: Dclient→anycast in top 5 ASes (w.r.t. number of

measurements).
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Fig. 5: δclient in top 5 ASes (w.r.t. number of measurements).

Particularly clear examples for the K-Root problem are

clients residing in the United States, but being routed towards

anycast servers located in London and Tehran. This is even

more surprising as there are at least seven K-Root servers

distributed across the United States, with four hosted on the

East Coast and two on the West Coast. Finally, we observe

that, in each of the examined ASes, some mobile clients are

redirected to the nearest anycast F-Root server, while the ideal

case never occurs for the K-Root service.



V. WHY TRAVELING SO FAR? A FIRST LOOK INTO

CELLULAR ANOMALIES

In the following paragraphs, we explore some of the causes

of anycast routing anomalies for cellular clients. In particular,

we focus on the measurements with a value of δclient higher

than 1,000 kilometers. This corresponds to more than 80% of

the experiments for K-Root and to 70% of the experiments for

F-Root. We refer to these measurements as suboptimal anycast

measurements.

We first compare the lengths of the AS-paths leading from

the cellular clients, on the one hand, towards the anycast-

assigned replicas and, on the other hand, towards the nearest

unicast servers. We then explore whether the announcement

policies of different root nodes – whether they are locally

or globally announced – affects anycast quality. Finally, we

identify three classes of anomalies including: (i) distant client

packet gateways, (ii) poor anycast routing within Tier-1 net-

works, and (iii) improper routing within cellular networks.

AS-path comparison. We analyze the lengths of the AS

paths between cellular clients and their assigned anycast

server, and between those clients and the geographically

closest unicast replica. We find that, when anycast servers are

geographically farther away than unicast servers, they still tend

to be closer in terms of number of traversed ASes as one would

expect with anycast routing. The paths client → anycast server

are shorter than the paths client → unicast replica in nearly

40% of the measurements towards K-Root and in more than

75% towards F-Root. While more than 80% of the paths to

F-Root anycast servers have a length of at most six AS hops

(more than 60%, considering K-Root), approximately 55% of

unicast paths for both DNS services are longer than six hops.

Root announcement policies. We also analyze the node

types of both DNS services. While all but one K-Root servers

are global, there are only four global servers for F-Root (one

in the Netherlands and three in the United States). We find that

clients from Singapore, Australia, the United States, and the

Dominican Republic are routed towards global nodes in the

United States, with a significant latency penalty for most of

them, despite the presence of local nodes in their geographical

surroundings. Note that, in cases where both a local and global

node reside in the same city, we are not able to distinguish

between them from traceroutes alone.

Further investigation into anomalous anycast routing for our

cellular clients reveals three classes of anycast performance

problems. While by no means exhaustive of all problems en-

countered by cellular clients, these common problems appear

to be either unique, or significantly more common, to cellular

with respect to fixed-line clients.

A. Distant Packet Gateway

As previously reported in [25], a cellular client’s packet

gateway (PGW) largely determines the client’s network posi-

tion and locality, since all client traffic is routed through that

PGW. This implies that client packets first encounter Internet

routing once they are beyond the PGW and thus, depending on

the relative distance between a client’s PGW and the assigned

�
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server, the wrong assignment of a client to a distant PGW

can be the determinant factor of anycast routing performance.

Knowing the location of a client’s PGW can therefore greatly

aid in diagnosing anomalous anycast routing.

We investigate the consequences of this phenomenon in

terms of latency. We find that for about 35% of the considered

anycast measurements, the clients’ request spends more than

50% of its time on the way towards the PGW. In particular,

for 45% of the traceroutes, the clients’ probe needs more

than 70 milliseconds to reach the assigned packet gateway.

These latencies are far from being negligible and suggest

that the routing within the users’ cellular network could be

significantly enhanced.

A striking example is depicted in Figure 6. These paths

correspond to a client located in Boston (MA), but whose

PGW is situated in Los Angeles (CA). While the closest uni-

cast replica is hosted in St. George (UT), the client’s anycast

request is routed to London, with a large latency penalty of

almost 100 milliseconds. In this scenario, the journey of the

packet is not only costly in terms of kilometers and latency

due to the suboptimal geolocation mapping between the client

and an anycast server, but also because the packet needs to

travel more than 4,000 kilometers to reach the PGW.

A more detailed analysis of our suboptimal anycast mea-

surements shows that, in 40% of the cases, the concerned

clients are located more than 1,000 kilometers away from their

assigned PGW, and, for approximately 10%, this distance is

larger than 3,000 kilometers. Unfortunately, even when the



PGW is far away from a cellular client, it does not mean

that the assigned anycast replica is near the packet gateway.

Indeed, for the users presenting a distance to their PGW larger

than 1,000 kilometers, their packet still has to travel more than

2,000 kilometers to reach its destination in more than 65% of

these measurements.

We take a closer look at the top five ASes in terms of

number of different clients suffering from suboptimal anycast

measurements. Figure 7 depicts the distribution of the dis-

tances between the clients and their PGW for each investigated

anycast case. Our results show that distant PGWs do not seem

to be a systematic issue: while this distance varies widely in

ASes 21928 (T-Mobile, US), 22394 (Verizon Wireless, US),

and 26599 (Vivo, Brazil), it is relatively stable and small for

ASes 12361 (Vodafone-Panafon, Greece) and 23243 (Comcel,

Guatemala). Specifically, for all the considered measurements

launched in ASes 12361 and 23243, the cellular clients present

a distance to their PGW smaller than 700 kilometers, which

is the case for less than 1% of the measurements seen in AS

26599. For AS 21928, we note that 60% of the measurements

have been carried out while clients were very close to their

assigned PGW (between 30 and 60 kilometers), while the

remaining 40% have been launched when they were farther

away from it (up to 3,000 kilometers).

B. Tier-1 Routing

We observe that many of the instances of poor anycast

performance occur when anycast paths traverse Tier-1 transit

networks. While Tier-1 routing problems are not solely specific

to cellular networks [22], we found them to be much more

prevalent on suboptimal cellular paths than on WiFi ones.

We found that 64% of the paths leading towards the assigned

anycast replica traverse at least one Tier-1 AS, while this is the

case for 73% of the paths towards the geographically closest

unicast server.

With large Tier-1 networks, we see clients often routed

to the same anycast replica, regardless of where clients en-

ter these networks. Many problematic cases we investigated

appear to be caused by packets remaining in the transit

network until routed to a distant destination. We find this

behavior in Tier-1 networks with varying levels of consistency.

For example, clients entering AT&T (AS 7018) split anycast

destinations between sites in Reno (NV) and London. We

also see clients routed through AboveNet (AS 6461) being

consistently routed to K-Root sites in London. An observed

example corresponds to a cellular client residing in Los

Angeles and whose PGW is in the same city. Even though

the geographically closest unicast server is in Reno, her

packet is routed to a server situated in London. Analyzing the

corresponding traceroutes reveals that more than 50% of the

hops in the path leading to the anycast server lie in AboveNet,

a well-known Tier-1 AS. As opposed to the anycast path,

the path connecting the cellular user to her nearest unicast

server exits the AS 6461 fairly quickly: less than 25% of the

traceroute hops are in this Tier-1 AS. As a consequence, the

latency towards the anycast server is much higher than the one

Fig. 8: Improper cellular network routing.

towards the closest unicast replica. In this scenario, the seen

traceroutes show a similar behavior as the ones in Figure 6.

Further analysis highlights that AboveNet is by far the most

often encountered Tier-1 AS. Indeed, this Tier-1 is seen in

55% of the anycast traceroute paths traversing at least one of

these ASes, while the second-most frequently observed one

(AS 12956, Telxius) in only 24% of these traceroutes. When

looking at the cases for which we have a δclient between 5,000

and 10,000 kilometers, AboveNet is still the most popular Tier-

1 (appearing in 40% of the traceroutes with Tier-1 hops), but

ASes such as 7018 (AT&T) and 2914 (NTT Communications)

are traversed more frequently with respect to the cases with

smaller values of δclient. In addition to that, we were curious

about the impact of Tier-1s on latency. Our results reveal that

anycast is suboptimal in terms of latency with respect to the

closest unicast replica in more than 70% of the cases when

the packet traverses at least one Tier-1 AS on its way to the

assigned anycast server.

C. Improper Cellular Network Routing

We found cases where paths leaving towards the anycast

and nearest unicast servers diverge immediately at the IP level

after exiting a client’s PGW, even though they both end up in

the same AS for the next IP hop. We discovered that 17% of

our analyzed cases suffer from improper routing within the

cellular network. However, this issue does not seem to be tied

to specific ISPs or regions, as we detected it in multiple ASes

located across Europe and the United States.

Figure 8 illustrates this phenomenon. In the figure, the IP

paths diverge right after they exit the client’s PGW. These

diverging paths remain in the operator’s same AS (AS 27699),

and even have the same next hop AS. In this scenario, the

client’s packet reaches the unicast replica significantly faster

than the assigned anycast server; we observe an impressive

latency difference of 151 milliseconds. While we cannot know

what caused this exact instance, we saw for several operators

multiple transit providers connected to, or very near, cellular

network PGWs. As we noted in the previous class, the choice
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Fig. 9: Characterization of the suboptimal anycast measurements using DBSCAN clustering. Highly suboptimal anycast

measurements (as compared to unicast) are located in clusters C2, C3 and within the outliers.

of transit can play a large role in the behavior of anycast routes.

This is especially true if the provider is a Tier-1 network, as

many commonly are for large cellular networks.

VI. TOWARDS AUTOMATIC CHARACTERIZATION OF

ANYCAST CELLULAR ANOMALIES

We devote the last section to further investigate the afore-

mentioned suboptimal anycast measurements (i.e., with δclient
higher than 1,000 kilometers) and corresponding anomalies.

We take an exploratory approach, and use machine-learning

techniques to provide first steps in the automatic identification

and characterization of anycast anomalies in cellular networks.

Given the general lack of ground truth regarding the nature

and root causes of the anomalies, we perform an unsupervised

analysis, relying on clustering techniques.

We take two different approaches: firstly, we use the

well-known DBSCAN clustering algorithm [26] to identify

homogeneous groupings and outliers within the suboptimal

measurements. Then, we apply a more advanced, DBSCAN-

based algorithm we have previously conceived in [27] to

automatically spot out the most relevant anomalies within the

measurements, without requiring any sort of training or labeled

data.

A. DBSCAN-based Analysis

By applying DBSCAN to the suboptimal anycast mea-

surements, we are able to identify four consistent clusters

Ci=1..4 (silhouette scores above 0.7) and a group of outliers,

i.e., measurements not belonging to any of the four clusters.

Following the results obtained in [27], we use auto-calibration

for DBSCAN parameters ρ (distance search coefficient) and

λ (minimum connected region size) [26], taking ρ = α × n

(α = 0.01) and λ = β × d̄ (β = 0.2), where n is the

number of measurements and d̄ the average distance between

all the different pairs of measurements. Each measurement is

described by a vector of 12 features: δclient, client to anycast

RTT (ARTT) and distance (CAD), client to closest unicast

RTT (URTT), client to PGW RTT (CPRTT) and distance

(CPD), PGW to anycast RTT and distance, anycast IP- and

AS-path length (IPPL and ASPL), number and fraction of

Tier-1 hops in the anycast path.

Figure 9 presents an overall characterization of the results.

According to Figures 9(b) and 9(c), anomalous or highly

suboptimal anycast measurements as compared to unicast are

located in clusters C2, C3 and within the outliers, representing

altogether more than 80% of all the suboptimal measurements.

Indeed, despite the higher geographical distance of the anycast

replicas, C1 and C4 measurements tend to have a similar

performance between anycast and unicast, and both clusters

consist of measurements with comparable latencies, trading

closer PGWs with farther anycast replicas between clusters.

Previous anomaly types (e.g., distant PGWs and

routing/path-inflation issues) are clearly observed in C2,

C3, and the outliers. Outliers systematically correspond to

poor anycast performance as compared to unicast, with large

latencies, far away replicas with long paths (potentially linked

to routing and path inflation issues), PGW selection at distant

locations, and very high differences in terms of geographical

distance to selected anycast versus unicast replicas. C3

measurements are characterized by large δclient values and

much higher latencies as compared to unicast replicas.

Finally, C2 measurements are more spread and correspond

to mostly worse-than-unicast performance scenarios, also

showing far located PGWs and anycast replicas, but resulting

in RTTs below 250 milliseconds for more than 85% of the

measurements.



0 5 10 15 20 25 30
10

4

10
5

identified outliers

S
o
rt

e
d
 A

b
n
o
rm

a
lit

y
 S

c
o
re

 (
lo

g
)

Fig. 10: Anomalies detected by sub-space clustering.

B. Anomaly Detection with Sub-Space Clustering

To conclude, we explore the possibility of automatically

spotting out the aforementioned anomalies to better support

the root cause analysis process. In particular, we apply a

fully unsupervised approach for anomaly detection (UAD)

previously conceived in [27] to the set of suboptimal anycast

measurements. In a nutshell, the UAD algorithm uses DB-

SCAN to cluster the measurements by relying on different

sub-spaces of the complete feature space, and accumulates

a weighted distance between outliers and clusters on these

sub-spaces to compute an abnormality score; the higher this

score, the more different (i.e., anomalous) is the corresponding

measurement from the rest. DBSCAN parameters are set

through the same auto-calibration approach described before.

We refer the reader to [27] for further details on the algorithm.

Figure 10 depicts the resulting abnormality scores obtained

by UAD, sorted in descending order. The number of identified

outliers corresponds to approximately 1% of the suboptimal

anycast measurements. There are different regions clearly

visible in the ranking, with knees and breaks showing different

levels of abnormality. To shed some light on the detected

anomalies, Table I reports the corresponding feature values

for the top-10 ranked anomalies.

The first two anomalies are characterized by very large

RTTs to both anycast and unicast replicas; anomalies with IDs

4, 6, 7, 8 correspond to similar measurements, characterized by

a very high δclient. Interestingly, anomalies 5 and 9 correspond

to some of the anomalies manually studied in Section V (cf.

Figures 6 and 8). Remaining anomalies 3 and 10 correspond

to far located anycast replicas and reasonably close PGWs,

suggesting anomalies linked to routing. In all cases, the

performance of anycast in terms of latency is far worse than

that of unicast, with a δclient higher than 2,000 kilometers.

VII. CONCLUSIONS

In this paper, we presented findings from the first look at

anycast performance for mobile users. Using data collected

from a crowdsourced platform, we showed that mobile clients

are very frequently mapped to a geographically suboptimal

anycast replica, with a significant impact on performance in

terms of latency. We found that the long distances between

clients and their assigned anycast server are not due to a lack

of better, closer unicast replicas, and that this phenomenon is

not bound to specific regions or particular ASes. Exploring

root causes highlighted three classes of anycast anomalies,

namely distant client packet gateways, poor anycast routing

TABLE I: Top 10 detected anomalies.
ID δclient (km) ARTT (ms) URTT (ms) IPPL CAD (km) CPD (km)

1 2,387 6,828 2,431 12 3,871 138

2 5,022 1,638 1,428 12 8,040 1,457

3 5,027 229 97 12 8,042 1,454

4 13,097 273 95 14 14,582 1,084

5 3,714 271 119 12 7,392 2,118

6 13,073 250 77 14 14,567 1,099

7 13,084 256 76 14 14,573 1,093

8 13,063 261 90 14 14,559 1,108

9 4,519 258 160 18 5,281 4,185

10 9,597 322 138 13 10,316 848

within Tier-1 networks, and improper routing out of cellular

networks. We finally presented a clustering-based analysis of

the suboptimal measurements, including a fully unsupervised,

automatic approach to identify the most critical cases. In

addition to that, we release our datasets to the networking

community. In ongoing work, we are exploring some of these

issues, including patterns of cellular specific anycast problems,

their role on CDN request routing, and the impact of these

pitfalls on clients’ quality of experience.
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