
HAL Id: hal-01815193
https://hal.inria.fr/hal-01815193

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Digital Typography Rendering
Nicolas P. Rougier, Behdad Esfahbod

To cite this version:
Nicolas P. Rougier, Behdad Esfahbod. Digital Typography Rendering. ACM SIGGRAPH Courses,
Aug 2018, Vancouver, Canada. <hal-01815193>

https://hal.inria.fr/hal-01815193
https://hal.archives-ouvertes.fr


Digital Typography Rendering
25 years of text rendering

Nicolas P . Rougier
Inria

Talence, France
Nicolas.Rougier@inria.fr

Behdad Esfahbod
Google

Menlo Park, California, USA
behdad@behdad.org

Figure 1: 25 years of text rendering

ABSTRACT
This short course (1h30) is an introduction to digital typography
rendering, providing key concepts of typography as well as intro-
ducing several computer graphics techniques to render text, from
the oldest and most common techniques (texture based) to the lat-
est methods taking full advantage of shaders with quasi flawless
rendering.

CCS CONCEPTS
•Computingmethodologies→ Rasterization; Non-photorealistic
rendering;

KEYWORDS
Text rendering, Bézier curves, shaders, typography, antialiasing,
kerning, shaping, hinting, unicode

ACM Reference Format:
Nicolas P . Rougier and Behdad Esfahbod. 2018. Digital Typography Ren-
dering: 25 years of text rendering. In Proceedings of SIGGRAPH ’18 Courses.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3214834.3214837

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’18 Courses, August 12-16, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5809-5/18/08.
https://doi.org/10.1145/3214834.3214837

1 INTRODUCTION
Typography is the art of arranging type to make written language
legible, readable, and appealing when displayed1. However, for the
neophyte, typography is mostly apprehended as the juxtaposition
of characters displayed on the screen while for the expert, typogra-
phy means typeface, scripts, unicode, glyphs, ascender, descender,
tracking, hinting, kerning, shaping, weigth, slant, etc. Typography
is actually much more than the mere rendering of glyphs and in-
volves many different concepts. If glyph rendering is an important
part of the rendering pipeline as it will be explainded below, it is
nonetheless important to have a basic understanding of typography
or there’s a known risk at rendering garbage on screen, as it has
been seen many times in games, software and operating systems.

2 TYPOGRAPHY
With the widespread adoption of Unicode2 as the canonical charac-
ter set for representing text a whole new domain has been opened
up in the system software design. Traditionally fonts were a collec-
tion of glyphs and a simple one-to-one mapping between characters
and glyphs. Rudimentary support for simple ligatures was available
in some font formats. With Unicode however there was a need
for formats allowing complex transformation of glyphs (substitu-
tion and positioning). Two technologies were developed to achieve
that, one is OpenType Layout from Microsoft and Adobe, the other
is AAT from Apple. These two technologies, plus TrueType and
Type1 font formats, all were combined in what is called OpenType.

1According to Wikipedia
2http://unicode.org

https://doi.org/10.1145/3214834.3214837
https://doi.org/10.1145/3214834.3214837
http://unicode.org


SIGGRAPH ’18 Courses, August 12-16, 2018, Vancouver, BC, Canada Nicolas P . Rougier and Behdad Esfahbod

There are fundamental differences in how AAT and OpenType
Layout work. In AAT the font contains all the logic required to
perform complex text shaping (the process of converting Unicode
text to glyph indices and positions). Whereas in OpenType, the
script-specific logic (say, Arabic cursive joining, etc) is part of the
standard and implemented by the layout engine, with fonts pro-
viding only the font-specific data that the layout engine can use to
perform complex shaping. The Free Software text stack is based on
the OpenType Layout technology. HarfBuzz3 is an implementation
of the OpenType Layout engine (aka layout engine) and the script-
specific logic (aka shaping engine).

Such complex shaping and layouting poses new problem in term
of rendering. If it is possible to cache glyphs on the GPU for simple
languages (e.g. English), it is virtually impossible to do the same
with complex layouts where a tremendous amount of composed
glyphs can be created on the fly. New approaches are thus necessary
to ensure fast, correct and just-in-time rendering.

3 RENDERING
Near the end of the last century, [Kilgard 1997] introduced a simple
OpenGL-based API for texture mapped text. The method packed
many rasterized glyphs into a single alpha-only texture map and
used a lookup table to assign texture coordinates to a quadrilateral
to extract a glyph when rendering. This approach yielded several
advantages over previous approaches (fixed size bitmap, stroke
font) because it allowed arbitrary rotation, scaling and projection
over 3D surface. More importantly, it allowed to have arbitrary
shaped glyph that can be loaded directly from standard bitmap
font files, such that font designers could work with standard tools
instead of writing explicit code to render glyph shapes. The primary
drawback of the method was that at high resolution, text became
quite pixelated, even using bi-linear texture interpolation. To cope
with this problem, [Green 2007] refined the method by computing a
(non-adaptive) signed distance field in place of the rasterized glyph
that could later be alpha-tested or thresholded. [Gustavson 2012]
showed that distance field can be computed efficiently. The method
of [Green 2007] differed from the one proposed by [Frisken et al.
2000] that was relying on an adaptive distance field and octree and
did not take advantage of shader at the time of publication.

Unfortunately, at very high resolution, artifacts still appeared
and it became necessary to use true vector font to achieve flawless
rendering. Before the advent of programmable shaders, this was
performed by approximating Bézier curves with many line seg-
ments, which was computationally expensive. However, [Loop and
Blinn 2005] introduced a new approach for resolution-independent
rendering of quadratic and cubic spline curves. By tessellating a
glyph the proper way, they offered de facto a method for resolu-
tion independent rendering of a glyph with good rendering quality
(anti-aliased is also supported). A few years later, [Esfahbod 2011]
refined the signed distance field method by using arc approxima-
tion of Bézier curves and encoding the required information into a
texture, allowing the conservation of sharp angles at any resolu-
tion. More recently, [Kilgard and Bolz 2012] proposed a two-steps

3https://www.freedesktop.org/wiki/Software/HarfBuzz/

method (stencil and cover) for GPU-accelerated path rendering as
an OpenGL extension. As stated by the authors, their goals are
completeness, correctness, quality, and performance, the extension
actually covers most of the OpenVG specifications while giving
very high performances. In the meantime, [Rougier 2013] proposed
a method for 2d rendering achieving best possible result with sub-
pixel rendering and positioning in the screen space. Two years
ago, [Chlumsky 2015] made a breakthrough by proposing a multi-
channel signed distance field method that was able to render sharp
angles (smoothed out corners is quite characteristic of the regular
signed distance field method). Last, but not least, two new methods
have been introduced last year by [Walton 2017] and [Lengyel 2017]
respectively. The former is currently tested for a future integration
in the Quantum rendering engine used by Firefox while the lat-
ter has been integrated into the slug library. They both achieved
fast and beautiful rendering and may have nearly solved the glyph
rendering problem... Until a new technique appears.

4 COURSE OVERVIEW
This 1h30 course has been split in two parts: one part introducing
key concepts in digital typography as well as the related software
stack (necessary libraries to read and use font information) and the
second part about the various computer graphics techniques for
rendering glyphs on screen.

• Part I: Introduction (25mn)
• Part II: Texture based rendering (20mn)
• Part II: Distance based rendering (20mn)
• Part II: Geometry based rendering (20mn)
• Conclusion (5mn)

REFERENCES
Viktor Chlumsky. 2015. Shape Decomposition for Multi-channel Distance Fields. Master’s

thesis. Czech Technical University in Prague,.
Behdad Esfahbod. 2011. Glyphy. https://github.com/behdad/glyphy. (2011).
Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. 2000.

Adaptively sampled distance fields. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques - SIGGRAPH '00. ACM Press. https:
//doi.org/10.1145/344779.344899

Chris Green. 2007. Improved Alpha-Tested Magnification for Vector Textures and
Special Effects. In ACM SIGGRAPH 2007 courses (SIGGRAPH ’07). ACM, New York,
NY, USA, 9–18.

Stefan Gustavson. 2012. OpenGL Insights. CRC Press, Chapter 2D Shape Rendering by
Distance Fields, 173–182.

Mark Kilgard. 1997. A Simple OpenGL-based API for Texture Mapped Text, Silicon
Graphics. (1997). http://reality.sgi.com/opengl/tips/TexFont/TexFont.html.

Mark Kilgard and Jeff Bolz. 2012. GPU-Accelerated Path Rendering. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2012) 31, 6 (Nov. 2012), to appear.

Eric Lengyel. 2017. GPU-Centered Font Rendering Directly from Glyph Outlines.
Journal of Computer Graphics Techniques (JCGT) 6, 2 (14 June 2017), 31–47. http:
//jcgt.org/published/0006/02/02/

Charles Loop and Jim Blinn. 2005. Resolution Independent Curve Rendering Using
Programmable Graphics Hardware. In ACM SIGGRAPH 2005 Papers (SIGGRAPH
’05). 1000–1009.

Nicolas P. Rougier. 2013. Higher Quality 2D Text Rendering. Journal of Computer
Graphics Techniques (JCGT) 2, 1 (30 April 2013), 50–64. http://jcgt.org/published/
0002/01/04/

PatrickWalton. 2017. Path Finder. http://pcwalton.github.io/blog/2017/02/14/pathfinder/.
(2017).

https://www.freedesktop.org/wiki/Software/HarfBuzz/
https://doi.org/10.1145/344779.344899
https://doi.org/10.1145/344779.344899
http://reality.sgi.com/opengl/tips/TexFont/TexFont.html
http://jcgt.org/published/0006/02/02/
http://jcgt.org/published/0006/02/02/
http://jcgt.org/published/0002/01/04/
http://jcgt.org/published/0002/01/04/

	Abstract
	1 Introduction
	2 Typography
	3 Rendering
	4 Course overview
	References

