Counting points on genus-3 hyperelliptic curves with explicit real multiplication

Simon Abelard 1 Pierrick Gaudry 1 Pierre-Jean Spaenlehauer 1
1 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic curve defined over a finite field $Fq$, with explicit real multiplication by an order $Z[η]$ in a totally real cubic field. Our main result states that this algorithm requires an expected number of $O((log q) 6)$ bit-operations, where the constant in the $O()$ depends on the ring $Z[η]$ and on the degrees of polynomials representing the endomorphism $η$. As a proof-of-concept, we compute the zeta function of a curve defined over a 64-bit prime field, with explicit real multiplication by $Z[2 cos(2π/7)$].
Type de document :
Communication dans un congrès
ANTS-XIII - Thirteenth Algorithmic Number Theory Symposium, Jul 2018, Madison, United States
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01816256
Contributeur : Pierre-Jean Spaenlehauer <>
Soumis le : jeudi 20 septembre 2018 - 09:55:03
Dernière modification le : vendredi 21 septembre 2018 - 01:18:52

Fichier

RMg3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01816256, version 3

Collections

Citation

Simon Abelard, Pierrick Gaudry, Pierre-Jean Spaenlehauer. Counting points on genus-3 hyperelliptic curves with explicit real multiplication. ANTS-XIII - Thirteenth Algorithmic Number Theory Symposium, Jul 2018, Madison, United States. 〈hal-01816256v3〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

9