Counting points on genus-3 hyperelliptic curves with explicit real multiplication - Archive ouverte HAL Access content directly
Conference Papers Year :

Counting points on genus-3 hyperelliptic curves with explicit real multiplication

(1) , (1) , (1)
1

Abstract

We propose a Las Vegas probabilistic algorithm to compute the zeta function of a genus-3 hyperelliptic curve defined over a finite field $Fq$, with explicit real multiplication by an order $Z[η]$ in a totally real cubic field. Our main result states that this algorithm requires an expected number of $O((log q) 6)$ bit-operations, where the constant in the $O()$ depends on the ring $Z[η]$ and on the degrees of polynomials representing the endomorphism $η$. As a proof-of-concept, we compute the zeta function of a curve defined over a 64-bit prime field, with explicit real multiplication by $Z[2 cos(2π/7)$].
Fichier principal
Vignette du fichier
RMg3.pdf (547.77 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01816256 , version 1 (15-06-2018)
hal-01816256 , version 2 (03-07-2018)
hal-01816256 , version 3 (20-09-2018)

Identifiers

  • HAL Id : hal-01816256 , version 3

Cite

Simon Abelard, Pierrick Gaudry, Pierre-Jean Spaenlehauer. Counting points on genus-3 hyperelliptic curves with explicit real multiplication. ANTS-XIII - Thirteenth Algorithmic Number Theory Symposium, Jul 2018, Madison, United States. pp.1--19. ⟨hal-01816256v3⟩
230 View
148 Download

Share

Gmail Facebook Twitter LinkedIn More