A. Bernacchia and S. Pigolotti, Self-consistent method for density estimation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.34, issue.3, pp.407-422, 2011.
DOI : 10.1214/aoms/1177704159

D. Bosq, Nonparametric statistics for stochastic processes: estimation and prediction, 2012.

J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, vol.19, issue.90, pp.297-301, 1965.
DOI : 10.1090/S0025-5718-1965-0178586-1

F. Cribari-neto, L. P. Vasconcellos, K. , L. Garcia, and N. , A Note on Inverse Moments of Binomial Variates, Brazilian Review of Econometrics, vol.20, issue.2, pp.269-277, 2000.
DOI : 10.12660/bre.v20n22000.2760

S. Dabo-niang, Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process, Applied Mathematics Letters, vol.17, issue.4, pp.381-386, 2004.
DOI : 10.1016/S0893-9659(04)90078-X

S. Dabo-niang, F. Ferraty, and P. Vieu, On the using of modal curves for radar waveforms classification, Computational Statistics & Data Analysis, vol.51, issue.10, pp.4878-4890, 2007.
DOI : 10.1016/j.csda.2006.07.012

URL : https://hal.archives-ouvertes.fr/hal-00635607

A. Dutt and V. Rokhlin, Fast Fourier Transforms for Nonequispaced Data, SIAM Journal on Scientific Computing, vol.14, issue.6, pp.1368-1393, 1993.
DOI : 10.1137/0914081

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA272687&Location=U2&doc=GetTRDoc.pdf

F. Ferraty and P. Vieu, Curves discrimination: a nonparametric functional approach, Computational Statistics & Data Analysis, vol.44, issue.1-2, pp.161-173, 2003.
DOI : 10.1016/S0167-9473(03)00032-X

I. K. Glad, N. L. Hjort, and N. G. Ushakov, Correction of Density Estimators that are not Densities, Scandinavian Journal of Statistics, vol.8, issue.2, pp.415-427, 2003.
DOI : 10.1002/9780470317020

L. Greengard and J. Lee, Accelerating the Nonuniform Fast Fourier Transform, SIAM Review, vol.46, issue.3, pp.443-454, 2004.
DOI : 10.1137/S003614450343200X

URL : http://math.nyu.edu/faculty/greengar/glee_nufft_sirev.pdf

B. Gregorutti, B. Michel, and P. Saint-pierre, Grouped variable importance with random forests and application to multiple functional data analysis, Computational Statistics & Data Analysis, vol.90, pp.15-35, 2015.
DOI : 10.1016/j.csda.2015.04.002

URL : https://hal.archives-ouvertes.fr/hal-01084301

P. Hall and N. E. Heckman, Estimating and depicting the structure of a distribution of random functions, Biometrika, vol.89, issue.1, pp.145-158, 2002.
DOI : 10.1093/biomet/89.1.145

J. Jacod, Lecture notes on " Mouvement brownien et calcul stochastique, 2007.

T. Kanamori, S. Hido, and M. Sugiyama, A least-squares approach to direct importance estimation, Journal of Machine Learning Research, vol.10, pp.1391-1445, 2009.

K. Makiyama, A Python Package for Density Ratio Estimation Dowloaded on may 4th 2018. URL https://github.com/hoxo-m/densratio_py Nicol, F., 2013. Functional principal component analysis of aircraft trajectories, Proceedings of the 2nd International Conference on Interdisciplinary Science for Innovative Air Traffic Management (ISIATM), 2016.

O. 'brien, T. A. Collins, W. D. Rauscher, S. A. Ringler, and T. D. , Reducing the Computational Cost of the ECF Using a nuFFT: A Fast and Objective Probability Density Estimation Method, Computational Statistics & Data Analysis, vol.79, pp.222-234, 2014.

O. 'brien, T. A. Kashinath, K. Cavanaugh, N. R. Collins, W. D. O-'brien et al., A fast and objective multidimensional kernel density estimation method: fastkde, Computational Statistics & Data Analysis, vol.101, pp.148-160, 2016.

F. Pedregosa, Scikit-learn: Machine learning in Python, JMLR, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

P. Rao and B. L. , Nonparametric density estimation for functional data by delta sequences, Brazilian Journal of Probability and Statistics, vol.24, issue.3, pp.468-478, 2010.

P. Rao and B. L. , Nonparametric density estimation for functional data via wavelets, Communications in Statistics?Theory and Methods, vol.3989, pp.1608-1618, 2010.

J. O. Ramsay and B. W. Silverman, Applied functional data analysis: methods and case studies, 2007.
DOI : 10.1007/b98886

C. Rommel, J. F. Bonnans, B. Gregorutti, and P. Martinon, Aircraft dynamics identification for optimal control, Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01639731

D. W. Scott, Multivariate density estimation: theory, practice, and visualization, 2015.
DOI : 10.1002/9781118575574

B. W. Silverman, Density Estimation for Statistics and Data Analysis, 1986.
DOI : 10.1007/978-1-4899-3324-9

C. J. Stone, An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates, The Annals of Statistics, vol.12, issue.4, pp.1285-1297, 1984.
DOI : 10.1214/aos/1176346792

URL : http://doi.org/10.1214/aos/1176346792

M. Sugiyama, I. Takeuchi, T. Suzuki, T. Kanamori, H. Hachiya et al., Conditional density estimation via least-squares density ratio estimation, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp.781-788, 2010.