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Abstract

Protein assemblies are often symmetric, as this organization has many advan-
tages compared to individual proteins. Complex protein structures thus very
often possess high-order symmetries. Detection and analysis of these sym-
metries has been a challenging problem and no efficient algorithms have been
developed so far. This paper presents the extension of our cyclic symmetry
detection method for higher-order symmetries with multiple symmetry axes.
These include dihedral and cubic, i.e., tetrahedral, octahedral, and icosa-
hedral, groups. Our method assesses the quality of a particular symmetry
group and also determines all of its symmetry axes with a machine precision.
The method comprises discrete and continuous optimization steps and is ap-
plicable to assemblies with multiple chains in the asymmetric subunits or to
those with pseudo-symmetry.

We implemented the method in C++ and exhaustively tested it on all
51,358 symmetrical assemblies from the Protein Data Bank (PDB). It al-
lowed us to study structural organization of symmetrical assemblies solved
by X-ray crystallography, and also to assess the symmetry annotation in the
PDB. For example, in 1.6% of the cases we detected a higher symmetry group
compared to the PDB annotation, and we also detected several cases with
incorrect annotation. The method is available at http://team.inria.fr/nano-
d/software/ananas. The graphical user interface of the method built for the
SAMSON platform is available at http://samson-connect.net.
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1. Introduction

Symmetrical protein complexes are very common in nature, as has been
highlighted in our previous work on symmetry detection in cyclic protein
assemblies [1], and many of these are deposited to the Protein Data Bank
(PDB) [2]. As function of proteins is very often determined by their struc-
ture, it appears that complex function requires complex structures [3, 4].
High-order symmetries are thus essential to build large and complex protein
assemblies. Dihedral and cubic groups are overrepresented among large pro-
tein assemblies with some specific structural functions, for example those of
viral capsids. Also, high-order symmetry drastically reduces the complexity
of de novo design of self-assembling nanomaterials [5, 6, 7, 8].

To assess the quality of symmetry for such assemblies, a cyclic symmetry
measure is necessary, as the cyclic axes constitute the basic bricks from which
one can reconstruct high-order symmetry groups. However, considering each
symmetry axis separately would result in a globally incorrect assessment, as
there are strict geometrical constraints between different axes of symmetry in
high-order symmetry groups. This motivated us to develop a symmetry de-
tection method specifically suited for dihedral and cubic groups. Indeed, the
need for this symmetry detection method exists, as some approximate meth-
ods, i.e. those from BioJava [9], are massively used to display the symmetry
axes on the PDB website [2].

Inspired by the quaternion arithmetic applied to the best superposition of
a set of points [10, 11, 12] together with our recent developments [13, 14, 1],
here we propose a new symmetry measure and an analytical method to find
the best symmetry axes of a symmetrical assembly possessing multiple sym-
metry axes. The method guaranties that the detected axes are consistent
with the symmetry constraints. Similar to the case of cyclic symmetry de-
tection [1], our method produces results with a machine precision, its cost
function is solely based on 3D Euclidean geometry, and most of the opera-
tions are performed analytically. This makes it extremely fast and particu-
larly suitable for exhaustive analysis of PDB data. Below we provide details
about the high-order symmetry measure and the computation of the symme-
try axes for an assembly possessing any point symmetry group. The method
first perceives the topology between different chains, and is able to deal with
complex subunits that are composed of multiple chains. Then it iteratively
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solves a constrained quadratic optimization problem using a set of analytical
solutions.

2. Methods

2.1. Notations

Similarly to the analysis of the cyclic groups [1], in this paper we will
be mainly dealing with 3× 3 matrices and 3-vectors. Therefore, bold upper
case letters (i.e. A) will denote matrices, bold lower case letters (i.e. b)
will denote vectors, and normal weight lower case letters (i.e. c) will denote
scalars. For trigonometric operations and illustrations we will also use an
arrow notation for 3-vectors, such as ~v.

All amino acids, except glycine, are chiral. Hence, symmetry groups that
can be present in protein assemblies cannot contain any reflection, inversion,
or improper rotation. The only remaining finite point groups are the cyclic
(Cn for the cyclic group of order n), dihedral (Dn for the dihedral group
of order n), tetrahedral, octahedral and icosahedral (respectively T , O and
I), the three cubic groups. Symbol Γ ∈ {Cn}n>1

⋃

{Dn}n>1

⋃

{T,O, I} will
denote one of these point groups. Its cardinality, i.e. the number of its
elements, will be denoted as |Γ|.

2.2. Root mean square deviation

As in our previous work on cyclic groups [1], we will express the symme-

try measure of a molecular assembly using the root mean square deviation
(RMSD). Given two sets of N points each, A = {ai}N and B = {bi}N , the
RMSD between them is given as

RMSD(A,B)2 =
1

N

∑

1≤i≤N

|ai − bi|2 . (1)

2.3. Group Theory

Firstly, we will give a brief introduction to the group theory used in
the paper. A group is a set of elements equipped with an operation that
combines any two elements to form a third element. Formally, it can be
written in the form of (Γ, ⋆), where Γ is a set of elements supplied with a
group operation ⋆. A homomorphism is a function that takes a group element
as input and returns an element of another group as output, preserving the
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group structure. Given two groups (Γ1, ⋆) and (Γ2, ∗), a homomorphism f
from Γ1 to Γ2 satisfies the following property,

∀g, g′ ∈ Γ1 : f(g ⋆ g
′) = f(g) ∗ f(g′). (2)

A homomorphism is called bijective if

∀g2 ∈ Γ2∃!g1 ∈ Γ1 such that f(g1) = g2, (3)

meaning that it provides a one-to-one association between the elements of
the two groups. In this paper, we will consider three different types of groups
:

• Rotation groups, where the elements are rotations and the group oper-
ation is the composition of rotations. The group of all rotations in 3
dimensions will be noted SE(3), and rotations will be noted r.

• Permutation groups, where the elements are permutations and the
group operation is the composition of permutations. A permutation
σ of the set {1, .., n} will be noted (σ(1), ..., σ(n)). The group of all
permutations of n elements will be noted Sn.

• Point groups Γ that will be composed of abstract elements. We know
how these elements are combined (meaning that we know the results
of composition of any two elements), and we will take the freedom to
use the elements either as permutations or as rotations, thanks to the
bijective homomorphisms that will be computed.

The considered point groups are only those that can be described with rota-
tion operators (no reflections or inversions). We say that a set of points (a
protein assembly will be represented with a set of points) has a Γ symmetry
if the rotations in Γ keep this set globally invariant. More precisely, any
rotation operator in Γ will displace each point that is located outside of the
rotation axis, but another point will take its place. It is natural to see Γ as
a rotation group, but also as a permutation group, since a rotation applied
to a set of points will permute them. For example, Figure 1 illustrates a C5

point group, which has a bijective homomorphism with a rotation group and
a bijective homomorphism with a permutation group.
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Figure 1: Point group C5 is illustrated. (a) Set of points with a cyclic symmetry of order
5; (b) All the rotations that keep this set of points fixed; (c) Associations between the
elements of C5, permutations of the points and rotations.

2.4. Problem definition

For a molecular point group Γ ∈ {Cn}n>1

⋃{Dn}n>1

⋃{T,O, I}, and an
assembly A = {ai,j}Ns,Na

consisting of Ns subunits, each composed of Na

atoms, we want to minimize the following loss function,

Loss2 =
1

|Γ|NsNa

min
σg ,rg

∑

g∈Γ

Ns
∑

i=1

Na
∑

j=1

(

aσg(i),j − rg (ai,j)
)2

, (4)

such that g 7→ σg and g 7→ rg are the bijective homomorphisms from Γ to
subsets of Sn and SE(3). The loss function is the sum of RMSDs between
the original assembly and the rotated assemblies for every rotation in the
group Γ. We should mention that this loss function is very natural, since
it is only based on Euclidean 3D distances, no adjustable parameters are
required and all the rotations rg have equal importance.

2.5. Workflow

Minimization of the loss function 4 requires optimization over the group
of rotations, which is a continuous optimization, and over the group of per-
mutations, which is a discrete optimization. In practice, we do not know how
to do both simultaneously, so we first apply a heuristic approach to deter-
mine the correspondences σg between the subunits, and then we optimize the
rotations. Overall, we solve the optimization problem in three steps,

1. Subunit definition

2. Estimation of the permutations

3. Optimization of the rotations

(5)
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The third step is an analytical continuous minimization. It gives the expected
result with a machine precision, as we have already demonstrated for cyclic
symmetries [1]. The first two steps are heuristics that assume the assembly
to be symmetric enough, which allows to estimate the best correspondences
between the subunits. This problem of estimating the best correspondence
is discrete. Any error during the estimation of the correspondences typically
leads to the solution of optimization problem 4 with the Loss comparable
to the distance between the center of masses (COMs) of the subunits. It is
therefore straightforward to verify whether the result of our discrete opti-
mization is correct. Without loss of generality, we assume that the molecular
point group called Γ is given. If it is not the case, we can exhaustively search
over three cubic groups and also try all the dihedral groups below a certain
maximum order. Below we discuss the individual steps of our optimization
algorithms in more detail.

2.6. Finding the subunits

We call subunit a minimum part of the symmetrical assembly, from which
the entire assembly can be reconstructed by replicating the subunits accord-
ing to the symmetry operator. Note that the total number of subunits in
a complete symmetrical assembly has to be equal to |Γ|. In most of the
practical cases, subunits are actually the individual chains of the molecular
assembly. In this case, it is straightforward to define them. In some cases,
however, subunits can be composed of several chains. To find these multi-
chain subunits, we create several sets of chains, each forming a Γ symmetrical
assembly. Then, the subunits are defined by appropriately choosing one chain
from from each of these sets as shown in Fig. 2. All the sets are Γ-symmetric
assemblies, and thus contain precisely |Γ| chains. Since we know the initial
number of chains in the assembly, we also know that the number of sets has to
be equal to the number of chains divided by |Γ|. These sets are constructed
using a penalty function defined for a pair of chains with four contributions.
These are obtained by computing a pairwise sequence alignment followed by
a structural superposition for all the pairs of chains. For two chains i and j
in an assembly composed of n chains, we define their penalty function as

d(i, j) =
dseq(i, j)

dmax
seq + 40

+
dstruct(i, j)

dmax
struct + 3Å

+
dangle(i, j)

dmax
angle + 0.05rad

+
dcenter(i, j)

dmax
center + 3Å

, (6)

where
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• dseq(i, j) is the minus BLOSUM62 score [15] of the sequence alignment
between chains i and j, computed using the MUSCLE package [16].

• dstruct(i, j) is the RMSD between two chains i and j, after the best
superposition of the corresponding alpha-carbons.

• Let us define an angle α(i, j) between two chains i and j as the angle re-
turned by the superposition procedure, i.e. the rotation angle between
them after the COMs were superposed. In a perfectly symmetrical as-
sembly, only a few values of these angles are possible. More precisely,
if a group Γ contains multiple symmetry axes nj...nk of orders j...k,
correspondingly, then the pairs of chains will be mutually rotated by
angles 2mπ/l, where 1 ≤ m < l with l = j...k. We define dangle(i, j)
as the absolute value of the difference between α(i, j) and the closest
listed angle.

• dcenter(i, j) is the distance between the initial COM of the whole assem-
bly and its position after applying the rigid-body transformation that
superposes chain i with chain j.

In all the contributions in the equation above, dmax stands for the largest
value of the corresponding contribution. This way, we ensure that all the
terms in the above equation have weights of approximately the same magni-
tude, and none of these terms are bigger than 1. To improve the discrimina-
tion of the penalty function for the assemblies with nearly perfect symmetry,
we also add constants to dmax to make the values of denominators sufficiently
large.

After having computed all the pairwise penalties d(i, j), we apply an
algorithm to cluster the chains into several sets, as it is listed in Alg. 1. To
merge two sets, we define a new set containing all the chains from the two
other sets. The clustering algorithm is based on the computation of pairwise
distances between the sets, where each distance is defined as an average of
the penalties between all pairs of chains, such that one chain belongs to the
first set and another chain belongs to the second set.

Once the sets are computed, we proceed with the construction of the
subunits. To do so, we first compute for each of the sets the symmetry axes
corresponding to the group Γ. The detailed axes computation procedure is
explained below. Then, we group chains from different sets to construct the
subunits. We first match axes computed for all the sets, then we choose
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foreach chain do

Create a new set;
Add this chain to the set;

end

while Number of sets is bigger than expected do
Find the two closest sets whose sum of sizes is smaller or equal to
the expected set size;
if Such a pair of sets is found then

Merge the two sets;
else

Fail;
end

end

Algorithm 1: Clustering algorithm.

one arbitrary reference chain from each set and assemble them to create the
first subunit. For all the other subunits, we choose a group operator and
assemble together all the chains from the different sets that correspond to
the reference chain to which this operator is applied. The correspondence
estimation method is detailed below.

2.7. Correspondences between subunits after a rotation

The number of bijective homomorphisms g 7→ σg from Γ to subsets of Sn

grows exponentially with the size of Γ, it is thus not feasible to do an exhaus-
tive search for |Γ| bigger than 10. Therefore, to estimate the correspondence
between the subunits we set up heuristics.

Let us start by imagining a perfectly symmetrical system consisting of
n subunits, with the center of the symmetry located at the origin. Let
{ci}{1≤i≤n} be the COMs of the subunits. Remark that ci are located on
a sphere. The convex hull of {ci}{1≤i≤n} , which is a polyhedron with n
vertices, possesses the following properties: each axis of symmetry of order
s > 2 crosses two faces of the convex hull, which are the regular polygons
with s vertices, and each axis of symmetry of order 2 crosses an edge of the
convex hull. We first create a reference graph from the edges of the convex
hull that belong to the regular polygons with one of symmetry axes of order
s > 2 passing through them. The topology of this graph does not depend on
the choice of the selected perfectly symmetrical system (see Figure 3). For
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Figure 2: Examples of finding subunits in a C5 complex containing 10 chains, which
leads to 2 sets and 5 subunits. Each chain is shown as a shape, with a local coordinate
frame computed with a structural superposition. A correct clustering in this example
should determine a set with the chains 1,2,3,4,5 (light grey) and another one with the
chains 6,7,8,9,10 (dark grey). The correspondence between the subunits after a rotation
is represented by the colored arrows. Chains belonging to the same subunits are drown
with the same outline colors. After we define the two sets, the first subunit is created by
taking arbitrary chains from each cluster (1 and 7 in (A), 1 and 6 in (B), 1 and 9 in (C)).
The other subunits are created using the correspondences between the chains in the sets.
Note that the assembling of subunits is not unique. In (A) and (B) the subunits seem to
be assembled more naturally, as they contain chains that are spatially proximate to each
other. However (C) is a perfectly valid assembly too. All the three subunit assemblies
give exactly the same result in terms of symmetry axes and the RMSD loss function.
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the dihedral assemblies we also include into the graph the edges crossing the
2-fold axes. The main idea behind the correspondence estimation method
is to fit our non-perfect system to a perfect canonical example, and then to
use the known correspondence from this canonical example to deduce the
correspondence of our system. To create such a fitting, the COMs of the
subunits are projected on a sphere centered in the COM of the assembly.
Then the polyhedral graph P [17] of the convex hull is computed, and we seek
for subgraphs of P that are isomorphic to the reference graph. This problem
is generally known as the subgraph isomorphism problem, which has been
well studied in literature [18]. Since our example is not perfect, it happens
that we obtain either zero or several matches. If we get zero matches, we
connect the two most spatially proximate yet unconnected vertices in our
graph with an edge and restart the subgraph isomorphism procedure until
we obtain some result. If we get several results, we use two geometric criteria
to select the best one. More precisely, the first criterion is the variance of
the lengths of the graph edges that belong to the same regular polyhedra.
The second criterion is the difference between the reference subunits’ angles
α(i, j) and the observed angles.

Once the polyhedral graph computed from the input structure has been
mapped to the reference graph, we use the precomputed correspondences of
the reference graph to map them on our graph and obtain the correspon-
dences between subunits for each element of Γ. This way, we ensure that the
function g 7→ σg is, by construction, a bijective homomorphism.

2.8. Graph representation of the group generation

A dual representation of a symmetry group given as a set of permutations,
will be a set of rotations. All of these can be obtained as a combination of
two generator rotations, one r3 being a rotation about a 3-fold axis ~v3 by
an angle 2π

3
for cubic groups, (respectively rn being a rotation about a n-

fold axis ~vn by an angle 2π
n

for dihedral groups) and the other r2 being a
rotation about a 2-fold axis ~v2 by an angle π. We should emphasize that
these two rotations are present in the 3 possible cubic groups. Then, we
may represent all the elements of a point group symmetry as vertices in a
Cailey graph [19], whose edges correspond to the two types of the generator

rotations. A group element here can be seen as a certain rotation of the
symmetrical assembly. For example, a tetrahedral symmetry would have 12
elements (or rotations), an octahedral symmetry would have 24 elements, and
an icosahedral symmetry would have 60 elements. The same representation
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A B C

Figure 3: Three convex hulls of COMs of perfectly symmetrical tetrahedral assemblies.
The black edges correspond to the maximum common topology between all the possible
tetrahedral configurations. The green and blue edges are present only in some convex
hull topologies. (A) and (C) show two typical topologies, while (B) shows a degenerated
example, where some of the convex hull faces are rectangular instead of being triangular.
By applying some random noise to the assembly shown in (B), we can obtain a convex
hull with randomly chosen green and blue edges.

holds for dihedral symmetry groups. These, however, will have one generator
being rn, a rotation about the n-fold axis by an angle 2π

n
instead of r3 as

the first generator. The number of elements is dependent on their order,
2n elements for Dn. It is easy to demonstrate that all the elements in the
groups can be obtained from any initial element by successively applying a
combination of the two generator rotations, such that the Cailey graphs are
connected, as it is shown in Figure 4. We can also see that a combination of
the two generator rotations only produces the group elements, such that the
graphs are finite.

2.9. Geometry of multiple axes of symmetry

A rotation operator can be uniquely represented by an axis and an angle
of rotation [13]. In our case, to determine the rotation operators, it is conve-
nient to only work with their axes, since the angles are already constrained
by the symmetry group. These axes are always placed in an identical config-
uration with respect to each other, and the position of two axes is sufficient
to determine the positions of all other axes [20]. Thus we construct our basis
with the axes of the two generator rotations defined above. The angle a be-
tween the two basis axes is uniquely defined by the type of symmetry group,
as it is shown in Figure 5. It is more convenient, however, to use cosine of
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A B C D

Figure 4: Cailey graph representation of the different cubic groups, (A) the tetrahedral,
(B) the octahedral, (C) the icosahedral, and (D) the dihedral D8. Each vertex represents
a group element, which is also a rotation of the symmetrical assembly. The directed edges
are the generator rotations applied to the group elements. The blue edges are the r3
generator rotations, the red edges are the r2 generator rotations, and the green edges are
the rn generator rotations. Each vertex has indegree and outdegree of two, such that the
graph is balanced.

A B C D

Figure 5: Four high-order point symmetry groups, (a) tetrahedral, (b) octahedral, (c)
icosahedral and (d) dihedral group D8. Two generator axes for each of the groups are
shown. The 3-fold axis is colored in blue, the 2-fold is colored in red, and the 8-fold axis
of the D8 group is colored in green. The angle a between the generator symmetry axes is
highlighted in yellow. These two axes are sufficient to describe the entire symmetry group.

the angle α = cos(a), such that

αTetrahedral =
1√
3

αOctahedral =

√

2

3
αIcosahedral =

φ√
3
, (7)

where φ is the golden number (
√
5 + 1)/2. The angles a will be then

aTetrahedral ≈ 54.7◦ aOctahedral ≈ 35.3◦ aIcosahedral ≈ 20.9◦. (8)

It is interesting to note that the dihedral symmetry group Dn can also be
rigorously described with two generator axes. One is a n-fold axis ~vn defining
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the Cn symmetry and the second is a 2 fold axis ~v2 perpendicular to it, such
that αDihedral = 0 and aDihedral = 90◦. For any 3D rotation rg, its rotation axis
can be expressed in a basis spanned by 3 axes ~v2, ~v3, and ~v3×~v2 (respectively
~v2, ~vn, and ~vn×~v2 for a dihedral group Dn), such that the associated rotation
quaternion Q̂g is written as

Q̂g ≡ [sg,qg] = [sg, agv3 + bgv2 + cgv3 × v2] (9)

for cubic groups and

Q̂g ≡ [sg,qg] = [sg, agvn + bgv2 + cgvn × v2] (10)

for dihedral groups. The rotation quaternion Q̂2Q̂g obtained by applying r2
after rg has the following coefficients,

s = −(αag + bg)

a = −(cg)

b = sg − (αcg)

c = −(ag).

(11)

Similarly, the rotation quaternion Q̂3Q̂g obtained by applying r3 after rg has
the following coefficients,

s = −sg
2
+

√
3

2
(ag + αbg)

a = −ag
2

+

√
3

2
(sg + αcg)

b = −bg
2
+

√
3

2
cg

c = −cg
2
+

√
3

2
bg.

(12)
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Finally, for a dihedral group Dn, the rotation quaternion Q̂nQ̂g has the fol-
lowing coefficients,

s = cos

(

2π

n

)

sg + sin

(

2π

n

)

ag

a = cos

(

2π

n

)

ag + sin

(

2π

n

)

sg

b = cos

(

2π

n

)

bg + sin

(

2π

n

)

cg

c = cos

(

2π

n

)

cg + sin

(

2π

n

)

bg.

(13)

2.10. Optimization of the rotations

Here we will use the same notations as in our previous work on cyclic
symmetries [1] . From now on, for simplicity, we will only write equations for
the cubic group. Indeed, the equations for the dihedral group are obtained
by substituting the index n for the index 3. Our goal is to minimize the loss
function defined in equation 4. For each element g of the chosen symmetry
group, the contribution to the loss function is the RMSD between rg(A) and
Ag = {aσg(i),j}. According to the RMSD master equation (3) from [1] with
B = Ag, we can say that A and B have the same COM, so the translational
part of RMSD becomes null and we obtain

RMSD2(rg(A), Ag) =
4

N
qT Igq+ 4sqTxg⊥ + xgs, (14)

where

Ig =





∑

(yi,jyσg(i),j + zi,jzσg(i),j) −
∑

(xσg(i),jyi,j + xi,jyσg(i),j)/2 −
∑

(xσg(i),jzi,j + xi,jzσg(i),j)/2

−
∑

(xi,jyσg(i),j + xσg(i),jyi,j)/2
∑

(xi,jxσg(i),j + zi,jzσg(i),j) −
∑

(yσg(i),jzi,j + yi,jzσg(i),j)/2

−∑(xi,jzσg(i),j + xσg(i),jzi,j)/2 −∑(yi,jzσg(i),j + yσg(i),jzi,j)/2
∑

(xi,jxσg(i),j + yi,jyσg(i),j)



 ,

(15)
and

xg⊥ =
∑

i,j

aσg(i),j × ai,j/N

xgs =
∑

i,j

(ai,j − aσg(i),j)
2/N.

(16)
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Our aim will be to minimize the sum of squared RMSDs over all elements
g of the group Γ. Let us first assume that we know the value of one of the
two axes v3 or v2, for example, v3. In practice, we first compute v3 axis as
a cyclic axis using the method from [1], then we alternate the computations
of v2 and v3 considering the other axis as known. This method converges
to machine precision in about 10 iterations. Thanks to the RMSD master
equation, we can write the loss function as a function of the axis v2 as follows,

∑

g∈Γ

RMSD2
g(v2) =

vT
2

(

∑

g∈Γ

b2g
4

N
Ig + 2

∑

g∈Γ

bgcg
4

N
Ig[v3]× +

∑

g∈Γ

c2g[v3]×
T 4

N
Ig[v3]×

)

v2

+

(

2
∑

g∈Γ

agbgv
T
3

4

N
Ig + 2

∑

g∈Γ

agcgv
T
3

4

N
Ig + 4

∑

g∈Γ

sgbgx
T
g⊥

)

v2

+
∑

g∈Γ

a2gv
T
3

4

N
Igv3 + 4

∑

g∈Γ

sgbgx
T
g⊥v3 +

∑

g∈Γ

xgs.

(17)

We can rewrite this equation as the following minimization problem with
respect to v2,

argmin
v2

vT
2 Av2 + bTv2 + c

s.t.

{

vT
2 v2 = 1

vT
3 v2 = α.

(18)

The two constraints come from the unit norm of the rotation axes and the
geometry of the generator axes. The above equations has the following coef-
ficients,

A =
∑

g∈Γ

b2g
4

N
Ig + 2

∑

g∈Γ

bgcg
4

N
Ig[v3]× +

∑

g∈Γ

c2g[v3]×
T 4

N
Ig[v3]×

b
T = 2

∑

g∈Γ

agbgv
T
3

4

N
Ig + 2

∑

g∈Γ

agcgv
T
3

4

N
Ig + 4

∑

g∈Γ

sgbgx
T
g⊥

c =
∑

g∈Γ

a2gv
T
3

4

N
Igv3 + 4

∑

g∈Γ

sgbgx
T
g⊥v3 +

∑

g∈Γ

xgs.

(19)

Similar equations can be written for the optimization of the loss function
with respect to v3.
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2.11. 2D trust-region optimization problem

The optimization problem (18) can be efficiently solved by reducing it
to the standard form of the trust-region subproblem. However, in our par-
ticular case, we can use one of the constraints in eq. (18) to project the
optimization problem to a two-dimensional subspace. This allows us to solve
it analytically, as we explain below.

First of all, it is convenient to chose an orthonormal basis (vx,vy,v3) and
rewrite the vector v2 in this basis as

v2 = αv3 + xvx + yvy. (20)

Then, the optimization problem (18) reduces to

argmin
x,y

x2
(

vT
xAvx

)

+ 2xy
(

vT
xAvy

)

+ y2
(

vT
y Avy

)

+x
(

2αvT
xAv3 + bTvx

)

+ y
(

2αvT
y Av3 + bTvy

)

+α2vT
3 Av3 + bTv3 + c

s.t. x2 + y2 = 1− α2.

(21)

To solve it, we find stationary points of the corresponding Lagrangian L(x, y, λ),

L(x, y, λ) = kx2 + 2lxy +my2 + 2px+ 2qy + λ(x2 + y2 − 1 + α2), (22)

with the following coefficients

k = vT
xAvx

l = vT
xAvy

m = vT
y Avy

p = αvT
xAv3 +

1

2
bTvx

q = αvT
y Av3 +

1

2
bTvy.

(23)

Assigning the partial derivatives of the Lagrangian to zeros, we arrive to the
following system of equations,











kx+ ly + p+ λx = 0

lx+my + q + λy = 0

x2 + y2 = 1− α2.

(24)

16



After eliminating λ we obtain
{

lx2 + (m− k)xy − ly2 + qx− py = 0

x2 + y2 = 1− α2.
(25)

Finally, we exclude the last equation by changing the variables and introduc-
ing the new optimization variable t,

x =
2t
√
1− α2

1 + t2
; y =

(1− t2)
√
1− α2

1 + t2
. (26)

Then, making the change of variables and multiplying the first equation by
non-zero (1 + t2)2 we obtain,

(

−l(1− α2) + pt
√
1− α2

)

t4 + 2
(

(1− α2)(k −m) + t
√
1− α2q

)

t3

+ 6(1− α2)lt2 + 2
(

1− α2)(−k +m) +
√
1− α2q

)

t− (1− α2)l − p = 0.

(27)
This is our final fourth-order algebraic equation, whose roots can be found
analytically [21]. After finding all of its roots, we discard the complex ones,
then compute the corresponding values of x and y, substitute them in the
original quadratic function (21) and choose the pair of x and y that gives
the smallest value. We also additionally test the case of y = −

√
1− α2 and

x = 0 that has been excluded during the change of variables in eq. (26).

3. Results and Discussion

3.1. Examples

Figure 6 presents an example of symmetry axes detection for each of
the cubic groups, i.e. tetrahedral, octahedral and icosahedral, and for a
dihedral group of order 6. These assemblies do not possess any particular
computational difficulty. Indeed, their asymmetric subunits are composed of
a single chain, which makes the first step of optimization problem 5 trivial.

Some assemblies contain more chains than the number of asymmetric sub-
units expected from their point group symmetry. Each subunit thus must
be composed of several chains. For example, Figure 7 shows the 5t0v struc-
ture, which is an octahedral assembly with 48 chains and a stoichiometry
of A24B24. This example demonstrates that our method determines sym-
metry axes in assemblies where the asymmetric subunits are composed of
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A B C D

Figure 6: Four examples of symmetrical assemblies with their axes. All of these are seen
from a 3-fold axis except for the last one, seen from a 6 fold axis. The order n of each
axis is represented with a regular n-gone, except of order 2 represented with a rhombus.
A – A tetrahedral assembly (1d0i) with the RMSD loss of 0.36 Å. B – An octahedral
assembly (1bfr) with the RMSD loss of 0.22 Å. C – A perfect icosahedral assembly (1stm)
with the RMSD loss of 0.0 Å. D – A dihedral D6 assembly (1f52) with the RMSD loss
of 0.20 Å. This illustration and all the illustrations below were produced in SAMSON
(www.samson-connect.net).

multiple chains. We should also note that in this case it is important to
rigorously take into account all the chains, since the angular difference in the
axis determination can be as large as 1◦ if only chains A or B are considered.

While scanning the PDB, we found several assemblies that are classified
with a low-order symmetry group, but can alternatively possess a higher
symmetry group. For example, Figure 8 shows the 1ocw structure, which is
a perfect C4 assembly with a stoichiometry of A4B4 and the RMSD loss of
0 Å. Our algorithm also detects a D4 pseudo-symmetry with the RMSD loss
of 2.68 Å, which is rather low. The visual inspection of this protein confirms
this possibility (see Fig. 8). Similarly, we also discovered some assemblies
with cubic symmetries that were labelled as cyclic in the PDB database.
Figure 9 shows two of such examples. One is the 4itv protein labelled as C2

(RMSD loss of 4.44 Å), but also possessing a tetrahedral symmetry with the
RMSD loss of 10.94 Å. The other is the 5hpn protein labelled as C5 (RMSD
loss of 0.68 Å), but also possessing an icosahedral symmetry with the RMSD
loss of 0.56 Å.

3.2. Comparison with other methods

We compared our approach with two other published methods following
the comparison strategy from our previous work on symmetry detection in
cyclic protein assemblies [1]. More precisely, we compared it to the results
published by David Avnir and colleagues [22, 23]. We will refer to it as to
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A B C

Figure 7: The 5t0v octahedral assembly. The homologous chains are colored with the
same color. A – The chains of the first type form an octahedral assembly with the RMSD
loss of 2.94 Å. B – The chains of the second type also form an octahedral assembly with
the RMSD loss of 2.67 Å. The axes are slightly different from the first assembly, with
about 1◦ of difference. C –y The axes are computed for the full assembly, with the RMSD
loss of 2.83 Å.

CSM (Continuous Symmetry Measure). We also compared our method to
the the one from Emmanuel Levy [3], and will refer to it as to Levy. Please
refer to the first part of our paper [1] for more details.

For the comparison, we have selected all dihedral assemblies presented in
the original CSM publications [22, 23]. These are listed in Table 1. We have
also complemented these assemblies with three examples of cubic groups,
5x47 with tetrahedral symmetry, 4p18 with octahedral symmetry, and 4zor
with icosahedral symmetry.

Table 1 lists the execution time and the symmetry measure (RMSD value)
for the three tested methods. As in the cyclic case [1], it clearly shows that
our method scales with the size of the input assembly much better than
the two other methods. This is especially notecable for large assemblies.
Regarding the accuracy of the obtained results, it is typically much better
than in the Levy method for high-order symmetries. As we have mentioned
in the first part of this work, comparison to CSM is trickier because this
method considers more atoms than we do. Therefore, the additional atoms
add more freedom to the CSM method when it chooses the correspondences
between these, which can explain small differences in the computed RMSD
values. For example, in the 1f52 case CSM reports a smaller RMSD measure
than we do (0.15 Å vs. 0.19 Å).
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90°

BA

Figure 8: The 1ocw protein colored in blue for the A chains and red for the B chains. A
– as seen from the 4-fold axis. B – as seen from a 2-fold axis computed with our method.

3.3. Exhaustive analysis of symmetrical structures in the PDB

To demonstrate the efficiency of our approach, we exhaustively analyzed
all the structures labelled as symmetrical in the PDB. To do so, we down-
loaded their biological assemblies (about 40,800 cyclic, 9,800 dihedral and
1,300 cubic examples as for January 2018) and assessed the symmetry for
each of these. Figure 10 plots the distribution of the RMSD symmetry mea-
sures for assemblies with different types of symmetry. We should note that
there are many structures with a very low RMSD value (< 0.001Å), which
is the precision of the pdb format. These are typically obtained by replicat-
ing subunits with crystallographic symmetry or BIOMT transforms, so they
have a perfect symmetry. Regarding all other structures, we can see that all
the three distributions of cyclic, dihedral, and cubic groups follow the same
law in the log-log scale. The maxima of the distributions belong to the range
of 0.2-0.5 Å, and there are no noticeable differences between the shapes of
all of these.

Another interesting question we are able to answer using our tool is
whether the degree of asymmetry is related to the size of the assembly under
consideration. In other words, we can study if the RMSD symmetry mea-
sure is related with the radius of gyration of the symmetrical assemblies. A
geometrical intuition would suggest that as the angular uncertainty should
stay constant with the size of the assembly, and of protein assembly grows
larger, the imperfections of its symmetry become more pronounceable. Vi-
sually, we would expect a linear correlation between the RMSD symmetry
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A B

Figure 9: A – The 4itv protein classified in PDB as C2 (RMSD loss of 4.44 Å), also has
a tetrahedral symmetry with the RMSD loss = 10.94 Å. B – The 5hpn protein classified
in PDB as C5 (RMSD loss of 0.68Å), also has an icosahedral symmetry with the RMSD
loss = 0.56 Å.

PDB Code Group RMSD(AnAnaS) RMSD(CSM) RMSD(Levy) AnAnaS Timea CSM Timeb Levy Timea

1msoc D3 1.36 Å - 1.39 Å 0.13 s 3.7 s 0.49 s
2hhb D2 1.64 Å 2.43 Å 1.64 Å 0.05 s 12.2 s 0.28 s
2nwc D7 0.81 Å - 0.89 Å 0.63 s 3950 s 2.3 s
2rgw D3 0.34 Å 0.39 Å 0.47 Å 0.23 s - 1.8 s
1odi D3 0.35 Å 0.50 Å 0.47 Å 0.14 s - 1.5 s
1f52 D6 0.19 Å 0.15 Å 0.54 Å 1.21 s - 16.6 s
5x47 T 0.85 Å - 1.02 Å 0.32 s - 5.62 s
4p18 O 0.19 Å - 2.13 Å 3.1 s - 131 s
4zorc I 1.05 Å - 2.38 Å 18.8 s - 1118 s

a AnAnaS and Levy times were measured on a Windows laptop equipped with an Intel i7 @ 3.1 GHz.
b CSM times and CSM symmetry measures were taken from [22] and [23] with a different, 7 year older, CPU. However, we believe that the
order of magnitude of these timings is still correct.

c For these structures, the biological assembly was used.

Table 1: Comparative results between AnAnaS, CSM and Levy methods for dihedral and cubic molecular assemblies.
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Figure 11: Distribution of the RMSD symmetry measure with respect to the radius of
gyration for non-perfectly symmetrical assemblies from PDB.

measure and the radius of gyration of the assemblies. However, it is not the
case in reality. Indeed, Figure 11 does not demonstrate any clear relation
between the size and the imperfection of the PDB assemblies, and the cor-
relation between these two variables is only about 0.1. Interestingly enough,
large assemblies are very well organized with sufficiently small values of the
RMSD measure. This is one of the reasons behind our choice of RMSD as
the symmetry measure instead of its normalization by the size of the struc-
ture (as it is often done in other methods [22, 23]). We should specifically
add that in the case of very small assemblies, we consider them symmetric
only if the corresponding RMSD measure is smaller than half of the radius
of gyration of the assembly.
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3.4. How good are symmetry annotations in the PDB?

Our tool also allows to assess the overall quality of annotations of sym-
metrical assemblies in the PDB. More precisely, we compared the highest
symmetry group suggested by our method with the group provided in the
PDB. If these two groups are different, there are two types of possible errors.
First, one of the two groups can be a subgroup of the other one (e.g. C4 is
a subgroup of D4). This type of errors simply results from a difference of
sensibility between the annotation methods. We call the groups compatible.
Second, the two groups may also be incompatible (e.g. C4 and D5). This case
means that one of the two results is wrong and a careful visual inspection is
generally required.

Table 2 lists the results for 51,358 PDB structures. In 50,378 cases (98.1%
of all the cases), the symmetry group annotated by the PDB is the one
found by our method. These cases are located at the green diagonal of the
table. Red cells show the incompatible groups, while white cells show the
compatible groups. Our method is generally more sensitive compared to the
PDB annotation. Indeed, there are 845 structures (1.6%) for which it finds
a higher order compatible group, while only in 125 cases (0.2%) the PDB
annotated compatible group has a higher order. Finally, there are only 13
cases (0.03%) that present incompatible groups. We have visually inspected
all of these structures. The two of these annotated as T and detected as C5

are 4aod and 4aoe, for which the biological assemblies are indeed C5. The
11 other cases have uncertainties between C2 and C3 annotation. In all of
these cases, both symmetries are detected by our method, and the difference
of RMSD between the two symmetries is smaller than 1 Å. Moreover, some
of these examples have less than 5 amino acids in each chain, and are at
the limit of the usability of the annotation techniques. We can also mention
two particular cases. One is 3alz, for which both perfect C3 and C2 axes are
detected, and is actually a part of a D3 assembly. The other is 3aqq, which is
annotated as C2 in the PDB, but looks much more like a partial C3 assembly.

The first column of Table 2 lists 75 structures for which AnAnaS was not
able to detect symmetry. There are 4 reasons that explain this:

• For the 6 icosahedral structures, we ran out of memory at the discrete
optimization step. Thus, no results were outputted and we considered
these cases as assymetric.

• Some structures have missing or additional chains that are not sup-
ported by our program. For example, 2zl2 has a D7 symmetry but
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PDB
AnAnaS C1 C2 C3 C4 C5 C6 C7 C8 D2 D3 D4 D5 D6 D7 D8 T O I Total

C2 54 33091 8 23 6 470 15 7 1 1 205 2 33883
C3 2 3 4188 16 60 4269
C4 1 2 1046 7 4 1060
C5 6 561 1 568
C6 2 2 411 1 416
C7 104 6 110
C8 34 3 37
D2 3 26 6571 6 1 2 6609
D3 8 5 1939 1952
D4 1 1 654 5 661
D5 1 236 237
D6 106 106
D7 1 1 99 101
D8 34 34
T 2 359 3 364
O 329 329
I 6 2 617 625

Table 2: Summary of the symmetry groups annotated in the PDB (rows) against the ones
discovered by AnAnaS (columns). Red cells mark incompatible groups, while white cells
mark compatible groups and green cells mark identical groups. For example, first cell
shows that there are 54 structures annotated as C2 in the PDB for which we found a C1

symmetry (i.e. no symmetry).

contains 24 chains, 10 of them being very small peptides. AnAnaS
expects a multiple of 14 chains as input to test a D7 symmetry and,
therefore, does not test it. However, if we remove these small peptides,
we detect a D7 symmetry with an RMSD of 0.35 Å.

• Some structures are at the edge of the threshold that we set up for the
assemblies to be symmetric. More precisely, as we explain it below,
RMSD must be smaller than 7 Å and also smaller than half of the
radius of gyration.

• Finally, some structures do not possess the symmetry annotated in
the PDB. For example, 2ol9 is the structure of two identical peptides
translated with respect to each other, and these are annotated as C2,
while a C2 symmetry would necessarily require a rotation between the
two peptides.
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3.5. Computational details

We implemented the AnAnaS method using the C++ programming lan-
guage. It is available as a standalone executable and also as a module with
graphical user interface for the SAMSON software platform. We can also
provide the source code upon request.

We have exhaustively assessed our program with all the structures labeled
as symmetric in the PDB. This demonstrates the reliability and robustness
of our method overall, and its heuristic for the discrete optimization steps in
particular. Running the tests on all of these structures took us about 10 hours
on a Windows laptop equipped with an Intel Core i7 @ 3.1 GHz CPU. For
all the examples we tested, the running time was largely dominated by the
multiple sequence alignment, which is required to compare the relevant alpha
carbons in different subunits. Only in one case (2qzv) with a D48 symmetry,
the computational bottleneck turned out to be the graph matching step.

We should also say that if no symmetry group is specified by a user, then
the program exhaustively tests all the symmetry groups that are consistent
with the number of chains in the input assembly. Also, we label an assembly
as symmetric only if the corresponding RMSD measure is smaller than 7
Å and smaller than half of its radius of gyration. The second condition is
added to filter out very small asymmetric assemblies.

4. Conclusions

This work extends our previous cyclic symmetry detection method [1] for
high-order point groups. It required to develop a robust heuristic algorithm
that perceives the correspondence between asymmetric subunits, and also to
extend the constrained quadratic optimization problem from [1] to multiple
symmetry axes with mutual constraints. Using the quaternion arithmetic,
we expressed the constrained optimization problem as a 2D trust-region sub-
problem and found its solution analytically. We have compared out method
with two other published techniques that can detect symmetry in high-order
symmetrical assemblies and demonstrated that it is generally much more
robust and efficient.

We have demonstrated the efficiency of our method on all the struc-
tures marked as symmetric in the PDB, including those with multiple chains
per asymmetric subunit or with pseudo-symmetry. It allowed us to verify
symmetry annotations in the PDB and detect several inconsistencies in the
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annotations. For example, in 1.6 % of the cases, we detected a higher symme-
try group compared to those provided in the PDB. We have also compared
structural organization of protein assemblies with different point group sym-
metries and concluded that these follow the same distribution laws. Finally,
we have detected that the angular impurity in symmetry does not scale with
the size of the assemblies. More precisely, very often these are the largest
and high-order symmetry systems that are organized the most regularly.

The method is available at https://team.inria.fr/nano-d/software/ananas/.
The SAMSONGUI-assisted module is available at http://samson-connect.net/.
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[2] P. W. Rose, A. Prlić, A. Altunkaya, C. Bi, A. R. Bradley, C. H. Christie,
L. D. Costanzo, J. M. Duarte, S. Dutta, Z. Feng, et al., The rcsb
protein data bank: integrative view of protein, gene and 3d structural
information, Nucleic Acids Res (2016) gkw1000.

[3] E. D. Levy, J. B. Pereira-Leal, C. Chothia, S. A. Teichmann, 3d complex:
a structural classification of protein complexes, PLoS Comput Biol 2
(2006) e155.

[4] E. D. Levy, E. B. Erba, C. V. Robinson, S. A. Teichmann, Assembly
reflects evolution of protein complexes, Nature 453 (2008) 1262–1265.

26

https://team.inria.fr/nano-d/software/ananas/
http://samson-connect.net/app/element?key=0a53a840-a147-12f8-29b1-b074a4041978


[5] N. P. King, W. Sheffler, M. R. Sawaya, B. S. Vollmar, J. P. Sumida,
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