
Proving Partial-Correctness and Invariance
Properties of Transition-System Models

Vlad Rusu
Inria, Lille, France

Email: Vlad.Rusu@inria.fr

Gilles Grimaud
University of Lille, France

Email: Gilles.Grimaud@univ-lille.fr

Michael Hauspie
University of Lille, France

Email: Michael.Hauspie@univ-lille.fr

Abstract—We propose a deductive verification approach
for proving partial-correctness and invariance properties on
transition-system models. Regarding partial correctness, we gen-
eralise the recently introduced formalism of Reachability Logic,
currently used as a language-parametric logic for programs, to
transition systems. We propose a sound and relatively complete
proof system for the resulting reachability logic. The soundness of
the proof system is formally established in the Coq proof assistant,
and the mechanised proof provides us with a Coq-certified
Reachability-Logic prover for transition-system models. The
relative completeness of the proof system, although theoretical in
nature, also has a practical value, as it induces a proof strategy
that is guaranteed to prove all valid formulas on a given transition
system. The strategy reduces partial-correctness verification to
invariance verification; for the latter we propose an incremental
technique in order to deal with the case-explosion problem that
affects it. All these techniques were instrumental in enabling us to
prove, within reasonable time and effort limits, that the nontrivial
algorithm implemented in security hypervisor that we designed
in earlier work meets its expected functional requirements.

I. INTRODUCTION

Partial correctness and invariance are among the most impor-
tant functional-correctness properties of algorithmic programs.

Partial correctness can be broadly stated as: on all terminating
executions, a given relation holds between a program’s initial
and final states; and invariants are state predicates that hold in
all states reachable from a given set of initial states.

Such properties have been formalised in several program
logics and are at the heart of several program-verification tools.

In this paper we generalise the verification of partial-
correctness and invariance properties, from programs, to
transition-system models. This enables the formal verification
of the given class of properties in earlier software-design stages
(i.e., algorithms) rather than in later ones (i.e., programs).

Our motivation is the well-known fact that the longer it takes
to uncover flaws in software, the more it costs to fix them.

How can one specify such properties on transition systems,
and how can one verify them? One possibility to consider is
that of Hoare logics [1], specifically designed for proving
partial correctness and invariance. However, Hoare logics
intrinsically require programs, as their deduction rules focus
on how instructions modify state predicates; and we do not
target programs but more abstract models - transition systems.

One could also express the properties of interest in temporal
logic [2] and use a model checker for temporal-logic formulas
on transition systems. However, model checkers are limited

to (essentially) finite-state transition systems (up to state
abstractions), a limitation we want to avoid. Yet another option
would be to use the Temporal Logic of Actions (TLA) [3]: in
order to prove properties of infinite-state transition systems one
uses Isabelle/TLA+ [4], an axiomatisation of the TLA’s proof
system in the Isabelle proof assistant [5]. A theoretical issue
with this approach is that of soundness (does the proof system
only prove semantically valid formulas?), which is not answered
positively in their axiomatic setting. A more practical issue is
that, to our best knowledge, only invariants are implemented in
Isabelle/TLA+: temporal properties, among which the partial-
correctness properties of interest to us, are not yet considered.

Contribution: We shall here use the Coq proof assis-
tant [6], whose expressive logic allows one to encode guest
logics and their proof systems, and to formally prove the
soundness of the proof systems in question. We express partial-
correctness properties by generalising Reachability Logic
(hereafter, RL) to transition-system models. RL [7] is originally
a language-parametric program logic generalising Hoare logics.
We propose a new proof system for RL in a transition-system
setting and mechanise its soundness proof in Coq, thereby
obtaining a Coq-certified prover for validity of RL formulas
on transition systems; i.e., Coq ensures that an RL formula
deemed valid on a transition system by our prover is truly so.

We also prove a relative-completeness result for our proof
system, which, although theoretical in nature, also has a
practical value, since it amounts to a strategy for applying
the proof system, which does succeed on all RL formulas that
are valid on a given transition system. As far as we know this
is the first formulation of completeness as a practically usable
proof strategy for valid RL formulas. The strategy reduces
partial-correctness verification to invariance verification; for
the latter we improve on a standard invariant-strengthening
technique that amounts to strengthen a state predicate until it
becomes inductive, i.e., stable under the transition relation. The
improvement is an incremental technique that mitigates the case
explosion problem known to affect invariant strenghtening: an
ever-increasing number of proof goals that need to be proved.

All these techniques (proof system, strategy reducing partial
correctness to invariance, incremental invariant strengthening)
were instrumental in enabling us to verify a nontrivial example
with a reasonable amount of time and effort. The example
is a transition-system model of a security hypervisor we
designed [8]. The hypervisor alternates between a simple static

code analysis/instrumentation and dynamic code execution
after the analysis/instrumentation has deemed a given code
section secure. This algorithm is designed to minimise the
execution-time overhead induced by time-costly alternations
between the analysis/instrumentation and execution phases. We
formally prove that the algorithm fulfills its expected functional
requirements: it hypervises all “dangerous” instructions in any
given piece of code while not semantically altering the code.

Related Work: In addition to the already-mentioned related
work we here provide more related-work information regarding
RL, formal program-verification in Coq, and hypervisors.

RL is a formalism designed for expressing the operational
semantics of programming languages and for specifying
programs in the languages in question. There are several
versions of the logic, among which [7] that we here generalise
to transition systems. Languages whose operational semantics
is specified in RL include those defined in the K framework [9],
e.g., Java and C. Once a language is formally defined in
this manner, partial-correctness properties of programs in the
language can be formally specified using RL formulas. The
verification is then performed by means of a sound deductive
system, which is also complete relative to certain oracles.

Besides the obvious difference (we work with transition
systems, whereas they work with programs in languages whose
operational semantics is also defined in RL) the most significant
difference between our RL proof system and theirs is that ours
is mechanised in (and therefore, certified by) Coq, whereas
theirs are automatic, but are not certified1. Thus, verification
in our case is less automatic, but it is more trustworthy.

Another significant difference is that our completeness result
is not only a theoretical one but also has practical applications:
it gives a strategy for applying the proof system’s rules that
reduces the verification of RL formulas to that of inductive
predicates, for which a systematic proof technique exists
(invariant-strengthening: enriching a given predicate with new
conjuncts obtained by analysing why it failed to be inductive).

Formal verification in Coq is a vast field; we here focus on
program verification. Major programming languages such as
Java and C are the object of formalisations using Coq. The
Krakatoa [11] toolset for Java, together with its counterpart
Frama-C [12] for C, are front-ends to the Why tool [13], which
generates proof obligations to be discharged in Coq (among
other back-end provers). Another Coq framework, dedicated to
a low-level extensible programming language, is Bedrock [14].

A hypervisor is for an operating system what an operating
system is for a process: it performs a virtualisation of the
underlying hardware. Two kinds of virtualisations can be
distinguished: para-virtualisation and full virtualisation. Para-
virtualisation prevents privileged operations (e.g., updating
memory-management data structures) to be directly executed
by guest operating systems, by “diverting” them to calls to
hypervisor primitives. Thus, para-virtualisation modifies the

1We note that Coq soundness proofs have earlier been achieved for various
RL proof systems [7], [10]. Those proofs did not grow into practically usable
Coq-certified program-provers, however, because the resulting Coq frameworks
are too hard to instantiate, even on the simplest programming languages.

source code of its guests: it can be viewed as a collaboration
between guest and hypervisor. The Xen [15] hypervisor is
an example of this category. By contrast, full virtualisation
does not require a guest’s source code to be modified; instead,
guest operating systems trigger exceptions when attempting
to run privileged instructions, which are then handled by the
hypervisor. VMWare [16], Qemu [17], and our comparatively
simple hypervisor [8] are examples of this category.

Hypervisors implement nontrivial algorithms, and formally
verifying them is an active research field ([18], [20], [19],
to name but a few - an exhaustive list of references can be
found in [21]). We only verify our hypervisor’s algorithm,
not its implementation; the counterpart is that our verification
effort is comparatively much smaller. Beyond hypervisors, full
operating-system kernels have been verified [22], [23], [24].

The Coq development for the hypervisor example is about
2900 lines long (in addition to 1500 lines for the proof system’s
soundness and strategy). Most of the two man-months effort for
the case study (in addition to one man-month for the proof sys-
tem’s soundness and strategy) was spent proving invariants. Coq
sources are available at http://project.inria.fr/rlase.

II. PRELIMINARY NOTIONS

A transition system is a pair (S,→) where S is a set of
States and →⊆ S × S is the transition relation. One usually
writes s→ s′ instead of (s, s′) ∈→. A path is a finite sequence
of states connected by the transition relation. We denote by
Paths the set of paths. The length len(τ) of a path τ is the
number of transition steps occurring in τ . That is, when τ ,
s0 → · · · → sn−1 → sn then len(τ) = n. For 0 ≤ i ≤ len(τ)
we denote by τ(i) the i-th state in the path τ and by τ |i.. the
suffix of the path τ starting at position i. A path is complete if
the last state on τ is final, i.e., there is no s′ such that s→ s′.
We denote by comPaths the set of complete paths,

We assume a set S# of State predicates, closed under
conjunction (∧), disjunction (∨), and negation (¬). The fact
that a predicate p is satisfied by a state s is denoted p s. The
predicates > (resp. ⊥) are satisfied by all (resp. by none of)
the states. For state predicates p, q, we write p⇒ q to denote
the fact that for all states s, if p s then q s. Finally, the symbolic
transition function→#: S#→ S# lifts the transition relation to
state predicates, and is defined such that for all s, (→# (p)) s
iff there exists s′ such that p s′ and s′ → s. By slightly abusing
the lambda anonymous-function notation, the state predicate
→# (p) can be defined as →# (p) , λs.∃s′.(p s′) ∧ s′ → s.

These notions naturally translate to Coq as follows2. States
have an arbitrary Coq type State. The transition relation is
defined as a predicate on pairs of states; in Coq this is written
as trans: State → State → Prop, where Prop is
Coq’s predefined type for logical statements. Paths have the
type list State obtained by instantiating the Coq generic
type list with the type State, and the additional properties
(consecutive states are in the transition relation) are written as

2Coq code is shown in teletype font mixed with mathematical symbols
(∀, →, etc) for better readability. Coq notions are introduced via examples.

s := 0
i := 0l0 l1 l2

i ≥ m

s := s+ i+ 1
i := i+ 1
i < m

Fig. 1. Running example: sum up to m.

separate definitions. The Coq predefined functions on lists nth
and lastn return the state at a given position on a path, and
the suffix of a path starting at a given position, respectively.

State predicates have the type SymState : Type :=
State → Prop. Then, the conjunction, disjunction, nega-
tion, bottom, and top operations and constants on state
predicates are defined using, respectively, Coq’s predefined
symbols ∧, ∨, ¬, False, and True. Implication p ⇒ q
translates to Coq as imp(p q: SymState):Prop:= ∀s,
p s→q s. Finally, the symbolic transition function →# is
written using Coq’s anonymous-function construction fun:
symTran(q:SymState):=fun s⇒∃s’,q s’∧tran s’ s.

We use as example a transition system that computes the
sum of natural numbers up to m (Fig. 1). To encode it in Coq
we define a type Location with the constants l0, l1 and
l2 and define the type State to be the Cartesian product
Location*nat*nat*nat. The transition relation is written
(L, M and R correspond to the left, middle, and right arrows):

Inductive tran: State → State → Prop :=

|L: ∀m s i,tran(l0,m,s,i)(l1,m,0,0)

|M: ∀m s i,i<m→tran(l1,m,s,i)(l1,m,s+i+1,i+1)

|R: ∀m s i,i≥ m→tran(l1,m,s,i) (l2,m,s,i).

III. REACHABILITY LOGIC ON TRANSITION SYSTEMS

We define in this section the syntax and semantics of RL
on transition-system models. First, given a transition system
(S,→) and q ∈ S# we let Paths(q) , {τ ∈ Paths | q(τ(0))},
and comPaths(q) , {τ ∈ comPaths | q(τ(0))}.

Definition 1: An RL formula is a pair l 2 r with l, r ∈ S#.
We let lhs(l 2 r) , l, rhs(l 2 r) , r. A path τ satisfies a
formula l2 r, denoted by τ |= l2 r, if τ ∈ comPaths(l) and
r(τ(k)) for some 0 ≤ k ≤ len(τ). An RL formula is valid,
denoted by |= l 2 r if for all τ ∈ comPaths(l), τ |= l 2 r.

Thus, satisfaction by a complete path means the initial state
of the path satisfies the left-hand side of the formula and
some state of the path satisfies its right-hand side. Validity
means a formula is satisfied by all complete paths induced by
a given transition system (globally assumed hereafter). Validity
specifies partial correctness because it disregards infinite paths.

For the transition system in Figure 1, consider the RL for-
mula (l = l0) 2 (l = l2 ∧ s = m× (m+ 1)/2). This formula
specifies that, on all complete paths starting in l0, the sum of
natural numbers up to the natural-number m is computed in
the variable s; i.e., it specifies functional correctness for this
simple system. Note that complete paths are those ending in l2.

[Imp]
H ` G

H ` {〈b, i, l 2 r〉} ∪G
if l⇒ r

[Spl]
H ` {〈b, i + 1, l1 2 r〉, 〈b, i + 1, l2 2 r〉} ∪G

H ` {〈b, i, l 2 r〉} ∪G
if l⇒ (l1 ∨ l2)

[Stp]
H ` {〈true, i + 1, l′ 2 r〉} ∪G

H ` {〈b, i, l 2 r〉} ∪G
if l ∧ f ⇒ ⊥, #→(l)⇒ l

′

[Crc]
H ∪ {〈false, 0, l′ 2 r′〉} ` {〈true, i + 1, l′′ 2 r〉} ∪G

H ∪ {〈false, 0, l′ 2 r′〉} ` {〈true, i, l 2 r〉} ∪G
if l⇒ l

′
,r

′ ⇒ l
′′

Fig. 2. Proof system.

We now present a proof system for the validity in RL. We
note that a direct proof of validity by induction on path lengths
is not feasible because the paths being complete makes the
induction hypothesis essentially useless, i.e., complete paths
of length < n are no suffix to a complete path of length n.

Final states: The validity of RL formulas depends on final
states (without successors by transition). Hereafter we shall
denote by f a state predicate such that s is a final state iff f s.
For example, in the transition system in Figure 1, f , (l = l2).

Rules: For technical reasons (related to the system’s
soundness) we shall consider indexed formulas 〈b, i, l2 r〉,i.e.,
triples consisting of a Boolean, a natural number and an RL
formula. There are four rules in our proof system (cf. Fig. 2).

Each rule transforms a sequent (i.e., an expression of the
form H ` G, with the hypotheses H and goals G being sets of
indexed formulas) into another sequent. We describe the effect
of the rules on sequents, ignoring the indexes of formulas
for now, as they are only there to support the soundness
proof (which we explain afterwards). Hereafter we often write
“formula” instead of “indexed formula”. Each rule in the proof
system is applied bottom-up, in the sense that a rule transforms
the sequent below its line into the one above its line.

The first rule says that if the left hand-side l implies the
right-hand side r then the formula l2 r is eliminated from the
current set of goals (i.e., it is considered proved: this makes
sense since such formulas are trivially valid). The second rule
allows one to split a formula whose left-hand-side implies a
disjunction, into two formulas, each of which takes one of the
disjuncts as its left hand-side. Right-hand sides always remain
the same. The third rule essentially replaces a formula’s left-
hand side by its image by the predicate transition function, up
to an over-approximation. The final rule is what makes the
system able to deal with unbounded-length behaviour in the
transition system under proof. It says that, if the left hand-side
l of a formula in the current set of goals implies the left-hand-
side l′ of a formula l′ 2 r′ from the initial set of goals, then
l2 r can be replaced by l′′2 r, for any over-approximation l′′

of r′. That is, the formula l′ 2 r′ (also being proved) served
as a “local acceleration” in the proof of another formula l2 r.

Definition 2 (proof): Assume a set G of indexed RL formulas
of the form 〈false, 0, l2 r〉. A proof is a sequence G0 . . . , Gn

such that for all i ∈ {0 . . . n− 1}, H ` Gi+1 is obtained from
H ` Gi by applying (bottom-up) one of the rules of the proof
system; and H = G0 = G, Gn = ∅. We let G ,

⋃
0≤i≤nGi.

We prove the following two formulas on the transition system
in Fig. 1, ignoring the indexes in order to simplify notations:

{(l = l0) 2 r, (l = l1 ∧ 0 ≤ i ≤ m ∧ s = i× (i+ 1)/2) 2 r}
with r , (l = l2 ∧ s = m× (m+ 1)/2). The first of the two
formulas is just functional correctness. The second formula was
chosen such that, taken in disjunction with l = l0, its left-hand
side l = l1 ∧ 0 ≤ i ≤ m ∧ s = i × (i + 1)/2 is what we
shall call a “terminator” for the first formula; in more standard
terminology it is an invariant at location l1 starting from l = l0.
Like in Hoare logics, proving partial correctness in RL uses
invariants; unlike Hoare logics, we are not here bound by the
syntax and semantics of a particular programming language.

We apply [Stp] to each the above formulas and get
{(l = l1 ∧ i = 0 ∧ s = 0) 2 r, ((l = l1 ∧ 0 ≤ i < m ∧
s = i× (i+ 1)/2) ∨ (l = l2 ∧ i = m ∧ s = i× (i+ 1)/2)) 2r}
The first of the above formulas was obtained by “moving” its
left-hand side from l1 to l2, assigning i and s to 0 in the process.
The second formula’s left-hand side is actually a disjunction,
because from l1 one can “stay” in l1 (hence the first disjunct)
or “move” to l2 (hence the second disjunct). We thus apply
the [Spl] rule in order to split the second formula in two:
{(l = l1 ∧ i = 0 ∧ s = 0) 2 r, (l = l1 ∧ 0 ≤ i < m ∧
s = i× (i+ 1)/2) 2 r, (l = l2 ∧ i = m ∧ s = i× (i+ 1)/2) 2r}
The last of the above formulas can be eliminated by [Imp] since
its left hand-side implies its right-hand side. This leaves the
first two formulas. Next, we note that the second formula can
be eliminated by [Crc] using the second formula in the initial
set of goals; and the first formula can likewise be eliminated
by [Crc] using the same initial formula - since (l = l1 ∧ i = 0
∧s = 0) ⇒ (l = l1 ∧ 0 ≤ i ≤ m ∧ s = i × (i + 1)/2) holds.
Each of the two eliminations above leave a copy of the formula
(l = l2 ∧ s = m× (m+ 1)/2)2 r, which we finally eliminate
by [Imp], leaving us with no more formulas to prove.

Soundness: We now deal with the soundness of our proof
system: a set of indexed formulas that has a proof (according
to Definition 2) is a set of valid indexed formulas.

Soundness is nontrivial because it cannot be proved by
induction on the length of derivations in the proof system
(which would be the standard way to proceed). The reason is
the [Crc] rule, which is unsound when used in an unrestricted
way: it can prove any formula, valid or not (just apply [Crc]
to the formula using itself and then [Imp]). The [Crc] rule is
crucial: without it the proof system can only deal with bounded-
length paths, which is not enough: even though the validity of
RL formulas only involves finite paths, the maximum length
of the (infinite) set of all such paths is typically unbounded.

However, a proof by induction on the length of paths can be
performed for the subsystem consisting of the rules [Imp] and
[Stp]. The idea is that formulas eliminated from the conclusion
are satisfied by a given path, whenever formulas added to
hypotheses (by the [Stp] rule) hold on shorter paths.

Unfortunately, this does not work when including the [Crc]
and [Spl] rules: induction on shorter paths does not work, and
neither does induction on proof length. This is where indexes
of formulas come into play: their role is to allow us to combine
the path-length well-founded order in a lexicographic product
with well-founded orders of the index components.

Using the the set of formulas G introduced at the end of
Definition 2, pairs (τ , 〈b, j, l 2 r〉) ∈ comPaths(l) × G are
ordered iff: either the path lengths are ordered by <; or, in case
the path lengths are equal, the Boolean components of indexes
are ordered by false < true; or, when both path lengths and
Boolean components are equal, the natural-number component
of indexes (upper bounded by the proof’s length) are ordered
by >. This is a lexicographical product of three well-founded
relations; it is thus well-founded, and it enables an induction
that proves a crucial first step towards soundness:

Lemma 1:for all (τ, 〈b, j, l2r〉)∈comPaths(l)×G, τ |= l2r.

A set G of indexed formulas is valid if for every 〈b, i, l2r〉 ∈ G,
the formula l 2 r is valid. A corollary of Lemma 1 is:

Theorem 1 (Soundness): If G has a proof then G is valid.

IV. RELATIVE COMPLETENESS

Soundness is important but is still only half of the story,
because a system that proves nothing is (vacuously) sound. We
still need to demonstrate the ability of our system to actually
prove something. This has two aspects: a theoretical one, called
relative completeness, which says that all valid formulas can, in
principle, be proved (relative to “oracles” for certain sub-tasks);
and a practical one: effectively applying the proof system on
examples. In our case theory and practice go “hand-in-hand”,
as the completeness result suggests a strategy for proving all
valid formulas. We deal with the theoretical aspect in this
section, and illustrate the practical one in the next section.

Definition 3: A state predicate I is a terminator for the RL
formula l 2 r if I ∧ f ⇒ ⊥,

#→(I)⇒ (I ∨ r) and l⇒ I.

The important thing about terminators is that one can
construct proofs for the formulas they are terminators of.

Lemma 2: If I is terminator for l 2 r then {〈false, 0, I 2 r〉}
and {〈false, 0, l 2 r〉, 〈false, 0, I 2 r〉} both have proofs.

Lemma 2 says that a succesful strategy for proving an RL
formula l 2 r consists in the discovering terminator predicates
I and then applying a certain sequence of rules to the set
essentially consisting of l2 r and I 2 r. This general strategy
is illustrated in the left column on a toy example, and we
sucesfully used this same strategy on our hypervisor example.

A natural question is whether for valid formulas l 2 r such
terminator predicates exist. The next definition and lemma
provide us with a positive answer (unde minor conditions).

Definition 4 (Coreachability Predicate): coReach+
f (r) ,

λs.∀τ ∈ Paths(s).f(τ(len(τ)) → (∃k)1 ≤ k ≤ len(τ).r(τ(k)).

Lemma 3: If |= l 2 r and l ∧ r ⇒ ⊥, then coReach+
f (r) is

a terminator for l 2 r.

In practice, the user typically needs to come up with simpler
terminators than coreachability predicates, but for relative
completeness (w.r.t. an oracle proving implications between
state predicates) coreachability predicates are good enough.

Theorem 2 (Relative Completeness): If G is valid and finite
then there exists a finite superset G′ ⊇ G that has a proof.

error

hyper

proc
free

block

Fig. 3. General structure of hypervisor.

V. HYPERVISOR MODEL EXAMPLE

A. General Description

We now describe our verification example: a security
hypervisor for machine code. The main idea is that the
supervisor “scans” machine-code instructions before letting
them be executed by a processor in kernel mode. Running
arbitrary instructions in this mode is clearly a security risk.

Most instructions are normal, i.e., the processor can safely
execute them in kernel mode. These typically include arith-
metical and logical operations on user-reserved registers. Other
instructions are special: they present a potential security risk
when executed in kernel mode, such as for example instructions
that access memory-management data structures. Before they
are executed, the hypervisor uses its knowledge on the current
state of the processor to check whether there is an actual
security risk. If this is not the case then the hypervisor passes
on the instruction to the processor for execution. However, if
there is a risk, the hypervisor takes appropriate actions such as
emulating the instruction, or blocking further code execution.

The main functional correctness properties of the hypervisor
are that (i) all instructions passed on to the processor are safe
to be executed in kernel mode and (ii) the hypervised code’s
semantics is not altered. That is, the hypervisor does all what
it is supposed to do, but not more. A crucial non-functional
property of the hypervisor, which guided its current design, is
that hypervision should slow down code execution as little as
possible. This excludes, for example, machine-code emulation
of normal instructions by the supervisor, since the emulation
is several magnitude-orders slower than hardware execution in
a processor. (However, some special instructions, which are
considerably fewer, can/must be emulated in order to avoid
security risks.) Another unrealistic design is to hypervise and
execute instructions one by one: indeed, the alternation between
hypervision and execution is a major source of execution-time
overhead, because it involves costly operations such as saving
and restoring a software image of the processor’s state.

Thus, the hypervisor must deal with as many instructions
as possible before letting them be executed by the processor.

A general graphical depiction of the hypervisor is shown in
Figure 3. The locations correspond to several modes in which
the hypervisor (plus the hypervised system) may be. In hyper

mode the hypervisor scans instructions. If an instruction is
normal the hypervisor accepts it and goes on to supervise
the next instruction, which in most cases is just the actual
next-in-sequence instruction in a given piece of code. Except,
of course, for jump instructions, which typically branch at
different adresses than that of the next-in-sequence one. Since
the hypervisor only emulates a small subset of the instructions
in the code, it has, in general, no way of knowing which is the
next instruction that it should scan after a jump instruction.

The idea is then to use the processor execution in a controlled
way in order to find out the missing information. The hypervised
code is altered: the problematic jump instruction is replaced
by a so-called trap instruction, and the current sequence
of hypervised instructions is “flushed” to the processor for
execution. In our state machine in in Figure 3 this amounts to
switching from the hyper to the proc mode. When the inserted
trap instruction is reached at execution time, a software image
of the processor state is generated, through which the hypervisor
“knows” where to continue hypervision after the jump. It can
thus go back to hyper mode after having restoring the jump
instruction in order to avoid leaving alterations in the code.

The same mechanism is used when a special instruction
is encountered by the hypervisor: it is replaced by a trap
instruction, the system goes to proc mode for executing
the current list of hypervised instructions, and when trap
is executed, appropriate action is taken by the hypervisor:
execution is either blocked (corresponding to the blocked mode
in Figure 3), or the special instruction is emulated and the
system switches back to hyper mode, after having restored the
special instruction in place of the trap to avoid code alteration.

As already stated previously these “switches” from code hy-
pervision to code execution generate much execution overhead.
The mode-switches generated by special instructions cannot be
avoided, otherwise, the hypervisor may violate its functional-
correctness requirements. Switches that can be avoided are
only among the ones generated by (normal) jump instructions.

The idea for this is to save in the hypervisor’s state the list of
instructions already hypervised in the current hypervision phase.
In case a jump instruction is encountered, which branches to
an instruction in this list, then there is no need to use the
above-mentioned trap-execution mechanism. Specifically, if
the jump instruction is conditional and only one of the two
addresses it may go to is in the already-hypervised instruction
list, then hypervision can safely continue from the other address
since a second hypervison of a ”safe” instruction sequence is
useless. Moreover, if both adresses a jump instruction may go
to are in the current list, then, the need for further hypervision
is eliminated altogether, since the code execution will “loop”
among instructions already hypervised and known to be “safe”.
In our state-machine representation this amounts to switching to
the free mode. The same thing happens for unconditional jumps
that go to an instruction in the already-hypervised instruction
list. Only in the remaining cases (all jumps go outside the list
in question) is mode switching via trap-and-execution required.

This optimisation is not arbitrary, as it deals well with
standard compilation of while-loops into machine code. The

first time a loop body is encountered it needs, of course, to
be hypervised; but when the conditional jump of the loop’s
compiled code is encountered a second time, the hypervisor
need not use a trap-and-execution mechanism to “solve” the
condition: all instructions in the loop body have already been
hypervised, thus, the processor will be able to safely execute
them; for now, hypervision just continues after the loop body.

Our hypervisor model has one last mode: error, which
corresponds to unexpected situations: for example, binary code
that corresponds to no known machine instruction.

B. Coq Model of the Hypervisor

The transition-system model of the hypervisor has the general
structure of the state machine shown in Figure 3. In addition to
the mode state-variable, which ranges over the values hyper,
proc, free, block, and error, there are eight other state
variables that constitute the State type. Thus, the type State is
a Cartesian product of nine components, in addition to mode:
• hi: points to the current instruction to be analysed;
• lo: points to the current instruction to be executed;
• oldlo: the previous version of lo (if any);
• i: memorises the instruction that was replaced by a trap;
• code: the piece of code being hypervised;
• seen: collects instructions in current hypervision phase;
• P: the part of the processor’s internal state relevant to the

control flow of the current code being hypervised;
• len: counts how many instructions were executed.

Before we show in a forthcoming paragraph the Coq encoding
of the transition relation we describe some additional artifacts.

a) Instructions and their execution: It is here useless to
encode in Coq all machine-code instructions. In our model we
only need to distinguish between normal, special, trap, and
halt instructions. In Coq this is encoded as a type Ins having
one value norm n (resp. spec n , resp· trap n) for each
natural number n, and one value halt. The latter instruction
represents the end of the current code execution. The effect of
all other instructions is modelled by an abstractly axiomatised
function (technically, a Coq parameter) having the signature

effect : option Ins → procState → procState

That is, effect takes: a value of type option Ins (which
is either Some i, i.e., an instruction of type Ins, or the
constant None3), and a value of type procState (i.e., the
part of the processor’s internal state that is relevant to the
control flow of the current code being hypervised); and the
function produces a new processor state, of type procState.

The actual definition of this function is not written in
Coq, since we do not model the semantics of machine-code
instructions. Rather, some of its properties are axiomatised. For
example, it is stated that the effect of an instruction replaced
(at code analysis/instrumentation time) by a corresponding
trap instruction is the same as that of the trap instruction
in question. This is used for proving the requirement that the
hypervisor does not alter the semantics of the hypervised code.

3Option types will also be used by other artifacts of our Coq model.

b) Static versus dynamic control flow: By static control
flow of a piece of code we mean the (typically, incomplete)
control-flow information that is known without executing the
code. The instructions that jump at constant addresses (or
do not jump at all) have such a statically-determined control
flow; by contrast, the control flow for instructions that jump at
addresses that dynamically depends on procState (e.g., on
register values) is not determined statically but dynamically.

The static control flow is used during code-analysis phases
since, for efficiency reasons, the hypervisor only emulates
a small fraction of the executed code; whereas the dynamic
control flow is, naturally, used during code-execution phases.

For static control flow we use a type Next consisting of
values none, one n, and two n m for natural numbers n
and m, which encodes the three possible cases of an instruction
having none, one, or two statically known successors. The
static control flow itself is modelled by a parameter function:

nxt : list Ins → nat → Next

that, given a list of instructions and a natural-number position,
returns the next statically-known address(es) of the next
instruction(s) for the instruction at the given position in the
given list. Naturally, it is axiomatically specified that, if the
given position exceeds the given list length, none is returned.

The dynamic control flow is also modelled by a parameter:

findNext:list Ins→nat→procState → option nat

that, given a list of instructions, a natural-number position, and
the processor’s state, returns the address of the next dynamically
known instruction (if any) for the instruction at the given
position in the given list. Naturally, relationships between static
and dynamic control have to be axiomatically assumed: i.e., if
the static control flow is known for a given instruction then
the static and dynamic control flows have to coincide.

Code instrumentation: When the hypervisor encounters
a special instruction, or a normal instruction for which it
cannot statically determine which instruction comes next (e.g.,
a conditional jump instruction depending on register values),
or the halt instruction, it saves the problematic instruction in
its state and replaces it with a trap, which has the effect ob
branching execution in the hypervisor, which takes appropriate
action (e.g., it emulated a special instruction). In our Coq model
code instrumentation is modelled by a function changeIns,
which is quite simple, thus we do not show it here.

What’s more important is that, for modelling and verification
purposes only, we adopt the following convention: halt
is replaced by trap(0); and the instructions of the form
norm(n), resp. spec(n) are replaced with trap(2*n+2),
resp. trap(2*n+1). This gives us a bijective correspondence
between the instructions that are replaced and the instructions
that replace them, allowing us to axomatically specify that,
e.g., the global effect of emulating a special instruction is the
same as that of executing the instruction in hardware (which
is essential for proving that the hypervisor does not alter the
code’s semantics). What is important here is the bijective
correspondence; the way we achieve it is a matter of modelling.

c) Transition relation: The transition relation trans :
State → State → Prop is defined inductively, just like
the one shown in Section II but significantly more complex. To
illustrate it we show the following transition, which corresponds
to: the currently analysed instruction is normal, the next
instruction is statically known and was not seen in current
analysis. Then, the hypervisor moves to the next statically-
known instruction. Here, the predicate In tests the presence of
an element in a list, :: constructs lists, and nth returns the
nth element of a list (or None if the element does not exist).

∀ k lo hi oldlo i code pos seen P len,

nth code hi = (Some(norm k))→ nxt code hi =

(one pos)→ ¬ In pos (hi::seen) → trans (hyper,

lo, hi, oldlo, i, code, seen, P, len) (hyper,

lo, pos, oldlo, i, code, (hi :: seen), P, len)

There are 17 such similarly-defined transitions; we do not
list them all here due to lack of space.

C. Coq Proof of Hypervisor’s Functional Correctness

The functional correctness of the hypervisor is expressed
as two Coq theorems. The first theorem states an invariance
property, saying that, at all times, the hypervisor does not let
special (i.e., potentially dangereous) instructions be executed by
the processor. The second theorem states a partial-correctness
property: when the hypervised code’s execution ends, its global
effect on the processor’s state is the same as as that of the same
code running without hypervision. The first property must hold
at all times, since special instructions may occur at any time;
by contrast, the second property is only relevant at the end
of the execution: indeed, while a special instruction is being
emulated, the property will typically not hold.

All special instructions are hypervised: For this invariance
property we define the set of initial states of the system: the
initial mode is hyper (since code must first be hypervised
befor being run), the hypervisor’s and processor’s instruction
pointers hi resp. lo are set to zero (by convention, the address
of the first instruction in the code), etc. We also define a general
notion of invariants as state predicates holding in all states
reachable from a given state predicate init:

Inductive reach : State → Prop :=

|init: ∀ s,init s → reach s

|step: ∀ s s’,reach s → tran s s’ → reach s’.

Definition invariant(P:State → Prop) := ∀ s,

reach s → P s.

Our invariance property is then stated as the following theorem:

Theorem hypervisor_hypervises:

invariant(fun s⇒match s with

(mode,lo,_,_,_,code,_,_,_)⇒
(mode=proc∨mode=free)→ ∃ ins,

nth code lo = Some ins ∧∀k,ins6=spec k end).

The fun anonymous-function construction here defines a
predicate, which holds for the states whose relevant components:
mode, instruction pointer lo, and code (extracted from

states by the match construction4) satisfy the constraint that
whenever instructions are executed (i.e, in modes proc or
free) the currently executed instruction is not a special one.

Hypervisor does not alter global code semantics: For this
partial-correctness property we also need to characterise final
states (i.e., without successor in the transition relation) since
partial correctness deals with executions ending in such states.
These are the states where the mode is either proc or free
and the current instruction being executed is either halt or a
trap 0 instruction that replaces it by code instrumentation.

We also need to characterise unhypervised code execution,
since our property is about comparing it with hypervised
execution. We thus inductively define a predicate run that
“applies” the effect function (that abstractly defines the
effect of instructions) for a sequence of instructions of a
given length, starting and ending at a given address an with
given initial and final processor states. Specifically, run code

(first,procInit) len (last,procFinal) holds if, by
executing len instructions from code, starting at address
first and from initial processor state procInit, the address
last and final processor state procFinal are reached.

The partial-correctness property is expressed as:

Theorem hypervisor_does_not_alter_semantics :

Valid(init 2 (final ∧ fun s ⇒
match s with(_,lo,_,_,_,code,_,P,len)⇒run

code (0,procInit) len (lo,P)end))

That is, starting from initial states (characterised by state
predicate init - the one also used for the above invariance
property), all executions that terminate end up in a state
satisfying (of course) final and, moreover, by running the
code unsupervised from the initial address zero and initial
processor state procInit, after len instructions (whose
value is “extracted” from the final state), the final address lo
and processor state P also coincide with those of the final state.

Proving the partial-correctness property: We apply the
strategy formalised in the proof of Lemma 2 and illustrated
in Section II on a small scale. Given the formula init 2 r
to be proved, we find a state predicate I such that I → ¬
final, (symTrans I) → (I ∨ r), and init → I
are valid. Since in our case (and, we expect, in many others)
both r → final and init → ¬ r are valid, by setting
I’ , (I ∧ final) ∨ r the three original implications
amount to init → I’ and (symTrans I’) → I’; and
since symTrans was defined to be the strongest-postcondition
predicate transformer, the validity of the last two implications
amount to stating that I’ is an inductive invariant.

Thus, proving RL formulas amounts is reduced to discover-
ing inductive invariants. This is, of course, a difficult task for
nontrivial transition relations and properties involving quantifier
alternation such as the ones at hand. There are, however,
systematic techniques for doing this, discussed in the next
paragraph. For proving the RL formula of interest an inductive
invariant consisting of a conjunction of 30 predicates was found.

4Underscores match state components that do not occur in a state predicate.

Fortunately we were able to reuse many (specifically, 23) of
the predicates required for proving the invariance property.

Proving the invariance property: For invariance properties
one can apply the invariant-strengthening technique: attempting
to prove a predicate is inductive (Coq definitions follow), and,
in case of failure, examining which of the transitions failed to
preserve the predicate and deriving new predicates that, taken
in conjunction with the original one, are (potentially) inductive.
This typically needs to be iterated many times before success.

Thus, a naı̈ve application of this systematic principle in Coq
quickly becomes unmanageable because of the case-explosion
problem: each inductiveness proof generates a large number of
subgoals, and when new conjuncts are added to a predicate in
attempts to make it inductive, both the new and old conjuncts
need to undergo the new proof attempt (and all the subsequent
ones), which requires the user to re-prove over and over again
subgoals that she already proved in earlier attempts. As a
consequence proof sizes and user efforts become unmanageable.

We thus propose a more incremental approach. We say a
predicate P is conditionally inductive w.r.t. a list L of predicates
if, by assuming the conjunction ∧L holds on pre-states, P is
preserved by transitions from pre-states to post-states:

Definition ind_cond(P: State → Prop)

(L: list(State → Prop)):= ∀ s s’,

(∧L) s → P s → tran s s’ → P s’.

The following lemma exploits conditional inductiveness.

Lemma ind: ∀P L,inductive(∧L)→ind_cond P L→
inductive (∧(P::L))

It is used as follows: assume that a previous attempt at
proving P inductive failed, and the user came up with the list
L of predicates for which she “believes” that inductive
(∧(P::L)) can be proved. By using the above lemma, this
amounts to proving the conditional inductiveness of P w.r.t. L,
which is typically feasible when L is adequately chosen, and
then (separately) the inductiveness of of the conjunction ∧(L)
where P is not involved any more. Thus, unlike in the naı̈ve
approach, the “old” predicate P, which is itself a typically
large conjunction, does not need to be dealt with over and over
again when it is further strengthened in subsequent steps.

VI. CONCLUSION AND FUTURE WORK

We introduce in this paper an approach for proving partial-
correctness properties and invariance properties for transition
systems. We generalise Reachability Logic (RL) from its usual
setting (programs) to transition systems, and propose a new
proof system for RL in this setting, for which we prove
soundness as well as relative completeness. While theoretical
in nature, the completeness result also has a practical value as
it suggests a strategy for the proof system that is certain to
succeed on valid RL formulas over a given transition system.
The Coq mechanisation of the soundness proof and of the
strategy provides us with a Coq-certified interactive prover for
RL. The reduction of partial correctness to invariance, and an
incremental approach for proving invariants, were helpful in

enabling us to complete a nontrivial illustrative example of a
security hypervisor within reasonable time and effort limits.

The main line of future work is exploiting our RL interactive
prover in more general ways than the strategy of reducing
each formula’s proof to that of one (typically large) inductive
invariant. This technique does work, both in theory and in
practice, but it does not result in modular proofs, which
our proof system allows in principle; for example, separately
proving an RL formula characterising a loop, and thereafter
simplifying the proof by replacing the loop by the formula. We
are also planning to refine our hypervisor model with further
optimisations that we implemented to enhance its performances,
and to prove the functional correctness of the refined model.

REFERENCES

[1] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12 (10): 576–580, 1969.

[2] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent
systems - specification Springer Verlag, 1992.

[3] The TLA homepage: https://lamport.azurewebsites.net/tla/tla.html.
[4] K. Chaudhuri, D. Doligez, L. Lamport and S. Merz. A TLA+ proof

system. In Proc. KEAPPA - IWIL Workshops, 2008, pages 17-37.
[5] The Isabelle proof assistant. https://isabelle.in.tum.de.
[6] The Coq proof assistant reference manual. http://coq.inria.fr.
[7] A. Ştefănescu, Ş. Ciobâcă, R. Mereuţă, B. Moore, T. F. Şerbănuţă, and G.

Roşu. All-path reachability logic. In RTA 2014, Springer LNCS 8560,
pages 425–440.

[8] F. Serman and M. Hauspie. Achieving virtualization trustworthiness using
software mechanisms In 10th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS’16).

[9] The K semantic framework. http://www.kframework.org.
[10] A. Arusoaie, D. Nowak, D. Lucanu, and V. Rusu, A Certified Procedure

for RLVerification. In 19th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNACS’17), 2017.

[11] The Krakatoa toolset: http://krakatoa.lri.fr.
[12] The Frama-C toolset: http://www.frama-c.com.
[13] The Why3 tool: http://why3.lri.fr.
[14] Adam Chlipala. The Bedrock Structured Programming System: Com-

bining Generative Metaprogramming and Hoare Logic in an Extensible
Program Verifier. ACM Sigplan Notices 48(9):391–402, 2013.

[15] P. Barham, B. Dragovic K. Fraser, S. Hand, T. Harris A. Ho, R.
Neugebauer, I. Pratt and A. Warfield Xen and the art of virtualization. In
SOSP 2003, ACM, pages 164–177.

[16] E. Bugniond, S. Devine, K. Govil and M. Rosenblum Disco: Running
Commodity Operating Systems on Scalable Multiprocessors. ACM
Transaction on Computer Systems (TOCS) 15(4):412–447,1997.

[17] The Qemu toolset: http://www.qemu.org.
[18] D. Leinenbach and T. Santen Verifying the Microsoft Hyper-V Hypervisor

with VCC. In FM 2009, LNCS 5650, pages 806-809.
[19] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome and A. Datta.

Design, Implementation and Verification of an Extensible and Modular
Hypervisor Framework. In ISPC 2013, IEEE, pages 430-444.

[20] A. Blanchard et al. A Case Study on Formal Verification of the
Anaxagoros Hypervisor Paging System with Frama-C. In FMICS 2015,
LNCS 9128, pages 15–30

[21] P. Bolignano. Formal Models and Verification of Memory Management
in a Hypervisor. PhD, Université de Rennes, 2017.

[22] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch and Simon Winwood. seL4:
Formal verification of an operating-system kernel. Communications of the
ACM, 6(53):107-115, 2010.

[23] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung
Kim, Vilhelm Sjöberg, and David Costanzo. CertiKOS: An Extenisble
Architecture for Building Certified Concurrent OS Kernels. USENIX
Symposium on Operating Systems Design and Implementation (OSDI’16),
pages 653-669.

[24] M. Dam et al. Formal verification of information flow security for a
simple ARM-based separation kernel. In CCS 2013, ACM, pages 223-234.

APPENDIX: PROOFS (FOR REVIEWING PURPOSES ONLY -
NOT INTENDED FOR PUBLICATION)

Lemma 4: If τ ∈ Paths(q) and len(τ) ≥ 1 then τ |1.. ∈
Paths(

#→(q)).
Proof. Let τ , s0 → s1 · · · with s0 ∈ γ(q). Then, τ |1.. is the
suffix of τ starting at s1, and we need to prove that (

#→(q))s1,
which, by the definition of

#→, amounts to proving that there
exists s′ such that q s′ and s′ → s1. Setting s′ , s0 proves
the lemma. �

Lemma 1: for all (τ, 〈b, j, l2r〉)∈comPaths(l)×G, τ |= l2r.
Proof. We define an order ≺ on the product comPaths(l)×G

by: (τ, 〈b, j, l 2 r〉) ≺ (τ ′, 〈b′, j′, l′ 2 r′〉) iff either len(τ) <
len(τ ′) or (len(τ) = len(τ ′) and b < b′) or (len(τ) = len(τ ′)
and b = b′ and i′ > i). Since: the ordering of complete paths
by length; the < relation on Booleans with false < true;
and the > relation the subset of natural numbers up to n (the
length of the proof) are well-founded orders, their lexicographic
product ≺ is a well-founded order as well. We proceed by
well-founded induction on ≺. We consider an arbitrary pair
(τ, 〈b, j, l 2 r〉) ∈ comPaths(l) × G. Let s = τ(0), thus, l s0.
Since 〈b, j, l2 r〉 ∈ G then there is i such that was eliminated
at step i, that is, 〈b, j, l2 r〉 ∈ Gi \Gi+1. We have four cases:

1) 〈b, j, l 2 r〉 was eliminated by [Imp]: then, l v r, and
τ |= l 2 r holds trivially.

2) 〈b, j, l 2 r〉 was eliminated by [Spl]: then, l ⇒ l1 ∨ l2
and there are formulas {〈b, j + 1, l1 2 r〉, 〈b, j + 1, l2 2
r〉} ⊆ Gi+1 ⊆ G. From l s0we obtain l1 s0 or l2 s0.
Assume l1 s0 - the other case is symmetrical. Then, the
pair (τ, 〈b, j + 1, l1 2 r〉) ∈ comPaths × G satisfies
τ ∈ comPaths(l1), and by definition of ≺ we have
(τ, 〈b, j+1, l12r〉) ≺ (τ, 〈b, j, l2r〉). Using the induction
hypothesis, τ |= l1 2 r, i.e., r(τ(k)) for some k, which
implies τ |= l 2 r and proves this case.

3) 〈b, j, l 2 r〉 was eliminated by [Stp]: we first show that
s0 is not terminal. For, assuming the contrary, then
f s0, and using l s0 we obtain (l ∧ f)s0 and therefore
l ∧ f 6⇒ ⊥, in contradiction with the applicaton of
[Stp]. We thus have a path τ = s0 → s1 → · · · with
len(τ) ≥ 1. We also have

#→(l) ⇒ l′ with the added
formula 〈true, j+1, l′2 r〉 ∈ Gi+1 ⊆ G. From s0 → s1

we obtain using Lemma 4 that (
#→(l)) s1, which implies

l′ s1, thus, τ |1.. ∈ comPaths(l′). By definition of ≺, we
have (τ |1.., 〈true, j + 1, l′ 2 r〉) ≺ (τ, 〈b, j, l 2 r〉) and
we obtain τ |1.. |= l′ 2 r; thus (τ(k))r for some k ≥ 1 .
Hence, τ |= l 2 r, which proves this case.

4) 〈b, j, l 2 r〉 was eliminated by [Crc]: then, b = true
and l v l′, for some 〈false, 0, l′ 2 r′〉 ∈ G, and then
〈true, j + 1, l′′ 2 r〉 ∈ Gi+1 ⊆ G, with r′ v l′′.
From l s0 we obtain l′ s0, thus, τ ∈ comPaths(l′),
and (τ, 〈false, 0, l′ 2 r′〉) ≺ (τ, 〈true, j, l 2 r〉) by the
definition of ≺, which by induction implies τ |= l′ 2 r′.
Thus, we have r′(τ(k)) for some k ≥ 0.
If k = 0 then from r′(τ(0)) and r′ ⇒ l′′ we get l′′(τ(0)),
thus, τ ∈ comPaths(l′′) and (τ, 〈true, j +1, l′′ 2 r〉) ≺

(τ, 〈true, j, l2 r〉) by the definition of ≺, which implies
τ |= l′′ 2 r i.e. there is k′ ≥ 0 such that r(τ(k′)), i.e.,
τ |= l 2 r.
Otherwise, k ≥ 1 with r′(τ(k)) and, again, since
r′ ⇒ l′′, l′′(τ(k)). Thus, τ |k.. ∈ comPaths(l′′), and
(τ |k.., 〈true, j+1, l′′2r〉) ∈ comPaths(l′′)×G is in the
≺ relation with (τ, 〈true, j, l2 r〉), thus, τ |k.. |= l′′ 2 r,
i.e. there is k′ ≥ k such that r(τ(k′)), which again
implies τ |= l 2 r.

Thus, for all the possible ways in which 〈b, j, l 2 r〉 ∈ G
can be eliminated during the proof, it holds that for any τ ∈
comPaths(l), τ |= l 2 r. The lemma is proved. �

Theorem 1 (Soundness): If G has a proof then G is valid.
Proof. Since G ⊆ G we obtain, using Lemma 1, that for

all (τ, 〈b, j, l 2 r〉) ∈ comPaths(l) × G, τ |= l 2 r. But this
just means that for all 〈b, j, l 2 r〉 ∈ G and τ ∈ comPaths(l),
τ |= l 2 r, which using Def. 1 is just the definition of validity
of the set G of indexed RL formulas; the theorem is proved.
�

Lemma 2: If I is a terminator for l 2 r, {〈false, 0, l 2 r〉}
and {〈false, 0, l 2 r〉, 〈false, 0, I 2 r〉} have proofs.

Proof. Let G0 , {〈false, 0, I 2 r〉}. We apply [Stp] and
obtain G1 , {〈true, 1, (

#→I) 2 r〉}. Since
#→I ⇒ (I ∨ r)

(cf. Def. 3) we apply [Spl] and obtain G2 , {〈true, 2, I 2
r〉, 〈true, 2, r2r〉}. The second of these formulas is elminated
by [Imp] and the first one is eliminated by [Crc] with the single
formula in G0 and then [Imp]. Hence G0 has a proof.

Wo now consider G′0 , {〈false, 0, l 2 r〉, 〈false, 0, I 2 r〉}.
From l ⇒ I (cf. Def. 3) we obtain using Lemma 5, that
#→(l) ⇒ #→(I) and thus

#→(l) ⇒ I ∨ r. By applying [Stp]
to the first formula using this overapproximation we get
G′1 , {〈true, 1, (I ∨ r)2r〉, 〈false, 0, I2r〉}. Applying [Spl]
to the first formula we get G′1 , {〈true, 2, I2r〉, 〈true, 2, r2
r〉, 〈false, 0, I 2 r〉}. The first of the formulas in G′2 is
eliminated by [Crc] with the single formula in G0 and then
[Imp]; the second formula is eliminated by [Imp], and one is
left with {〈false, 0, I 2 r〉}, i.e., with G0, which, as we have
seen above, has a proof. Hence G′0 also has a proof. �

Lemma 5: For all q, q′ ∈ S# with q ⇒ q′, it holds that
#→(q)⇒ #→(q′).
Proof. Consider an arbitrary state s′ such that (

#→(q)) s′. By
definition of

#→, there exists a state s with q s and s→ s′. Since
q ⇒ q′ we also obtain q′ s. Thus, using again the definition
#→ we obtain (

#→(q′)) s′. Thus,
#→(q)⇒ #→(q′): the lemma is

proved. �

Lemma 3: If |= l 2 r and l ∧ r ⇒ ⊥ then coReach+
f (r) is a

terminator for l 2 r.
Proof. We have to show the following:
• coReach+

f (r)∧f ⇒ ⊥, i.e., coReach+
f (r) is not satisfied

by terminal states, which is ensured by Definition 4 (i.e.,
if coReach+

f (r) were satisfied by a terminal state s then
any τ ∈ comPaths(s) would be of length 0, contradicting
(∃k)1 ≤ k ≤ len(τ). r(τ(k))).

•
#→(coReach+

f (r)) ⇒ coReach+
f (r) ∨ r: We choose an

arbitrary state s such that (
#→(coReach+

f (r))s. By defini-

tion of
#→, there is s′ with (coReach+

f (r))s
′ and s′ → s.

Consider thus any path τ starting in s and leading to a
state satisfying f . The path τ ′ obtained by prefixing τ
with the transition s′ → s also leads to the same state
satisfying f . This means that τ ′ encounters a state in
satisfying r, i.e. there is k′ ∈ {1 . . . len(τ ′)} such that
r(τ ′(k′)). If k′ = 1 then τ ′(k′) = τ ′(1) = s satisfies r.
Otherwise, k′ > 1, and τ has the state τ(k′− 1) = τ ′(k′)
satisfying r with k′ − 1 ∈ {1 . . . len(τ))}. Thus, in this
case, the arbitrarily chosen path path τ starting in s and
leading to a state satisfying f has a state τ(k) satisfying
r, for k , k′−1 ∈ {1 . . . len(τ))}, i.e., (coReach+f (r))s.
Overall, (coReach+

f (r)) ∨ r)s: this item is proved.
• l ⇒ coReach+

f (r): Let s be arbitrary chosen such that
l s. From |= l 2 r we obtain that any path τ starting in
s and leading to a state satisfying f encounters a state
satisfying r. Since l∧r ⇒ ⊥, the position at which the path
encounters r is in {1 · · · len(τ)}, i.e., (coReach+

f (r))s,
which proves this item and the lemma.

�

Theorem 2 (Relative Completeness): If G is valid and finite
then there exists a finite superset G′ ⊇ G that has a proof.

Proof.
Set G′ , G∪

⋃
〈false,0,l2r〉∈G{〈false, 0, coReach

+
f (r)2r〉}.

We first use the [Spl] rule to decompose each formula in G into
l ∧ r2r (which do satisfy (l∧r)∧r ⇒ ⊥) and l ∧ r2r (which
are eliminated by [Imp]). For each remaining formula, of the
form l ∧ r2 r, use the corresponding formula coReach+

f (r)2
r to eliminate it, like in the proof of Lemma 2, using the
fact, easily established using Lemma 3, that coReach+

f (r) is a
terminator for l ∧ r2r. Then, one is left with the set of formulas
of the form coReach+

f (r)2 r, which are again eliminated like
in the proof of Lemma 2. The theorem is proved. �

