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Abstract

The Continuous Sensitivity Equation (CSE) method allows to quantify how changes in the input
of a Partial Differential Equation (PDE) model affect the outputs, by solving additional PDEs ob-
tained by differentiating the model. However, this method cannot be used directly in the framework
of hyperbolic PDE systems with discontinuous solution, because it yields Dirac delta functions in the
sensitivity solution at the location of state discontinuities. This difficulty is well known from theoret-
ical viewpoint, but only a few works can be found in the literature regarding the possible numerical
treatment. Therefore, we investigate in this study how classical numerical schemes for compressible
Euler equations can be modified to account for shocks when computing the sensitivity solution. In
particular, we propose the introduction of a source term, that allows to remove the spikes associated
to the Dirac delta functions in the numerical solution. Numerical studies exhibit a strong impact
of the numerical diffusion on the accuracy of this strategy. Therefore, we propose an anti-diffusive
numerical scheme coupled with the approximate Riemann solver of Roe for the state problem. For
the sensitivity problem, two different numerical schemes are implemented and compared: one which
takes into account the contact wave and another that neglects it. The effects of the numerical diffu-
sion on the convergence of the schemes with respect to the grid are discussed. Finally, an application
to uncertainty propagation is investigated and the different numerical schemes are compared.

1 Introduction

The study of how changes in the inputs of a model affect the outputs is critical for several engineering
processes, such as design optimization or uncertainty quantification. This task is usually referred as
sensitivity analysis (SA) and can be done in many ways, depending on the nature of the model, the
amplitude of the perturbations considered, their deterministic or stochastic nature, etc [23]. In the
present work, we consider only systems governed be Partial Differential Equations (PDEs) and we
focus on the estimation of the derivative of the PDE solution with respect to an input parameter. This
approach is intrinsically local and only make sense for perturbations of small amplitude, especially for
highly non-linear models. The estimation of the derivative is achieved by solving a set of additional
PDEs obtained by differentiating the original PDE model with respect to a single input parameter
of interest. This approach is referred as the sensitivity equation method for PDE models [4], and is
closely related to the linear perturbation method [23].

In the specific case of PDE models, there are two main classes of methods to compute the sensitiv-
ities: the discretise-then-differentiate approach and the differentiate-then-discretise one. Both strate-
gies have advantages and disadvantages and both are valid and are suitable for different applications.
The differentiate-then-discretise approach is usually considered as more flexible, because it does not
require the knowledge of how the original PDE model is solved, and is qualified as non-intrusive. On
the contrary, the discretise-then-differentiate approach necessitates the knowledge of the discretized

1



equations, but yields a set of consistent derivatives. A detailed comparison between the two for opti-
mization problems is done in [19]. In this work, we focus on the differentiate-then-discretise approach,
referred in this context as the Continuous Sensitivity Equation (CSE) method [4, 13, 12, 22]. There-
fore, the sensitivity equations are obtained by formally differentiating the PDE model with respect
to the parameter of interest, and then by exchanging the derivatives with respect to the parameter
with the ones in space and time, yielding a new system of PDEs that should be discretized and solved
numerically.

However, this method works only under certain assumptions of regularity of the state solution,
which may not be verified in the hyperbolic framework. In fact, if this technique is directly applied
to hyperbolic equations in case of discontinuous solutions, Dirac delta functions will appear in the
sensitivity. This question has been explored in [3, 26] with a theoretical viewpoint, and more recently
in [16, 17, 5] with a numerical viewpoint. While some authors have adapted their numerical strategies
to handle the Dirac delta functions in the solution [9, 11, 15], others have proposed a modification
of the sensitivity system to “remove” the spikes from the numerical sensitivity solution[16, 17], while
maintaining the original solution in the regular regions. This is mainly motivated by the observation
that the spikes can difficultly be seized numerically, even if they are physical, and do not interact
well with classical numerical schemes [2, 18, 26]. We already contributed to these investigations, in
particular in the context of the barotropic Euler system in Lagrangian coordinates, i.e. the p−system
[5]. In this paper, we extend the proposed methodology to the complete compressible Euler system.
Firstly, to remove the barotropic condition the additional energy equation must be considered, and
this leads to the presence of a third wave, which is a contact discontinuity. Secondly, in Lagrangian
coordinates the sign of the speed of the waves is known, which is not the case in Eulerian coordinates.
These facts lead to a slightly more complicated design of the numerical schemes. Numerical results
show that the numerical diffusion plays an important role in this framework, so particular attention
is given to the design of anti-diffusive numerical schemes. Finally, another objective of this paper is
to investigate, for a simple problem of uncertainty propagation, the impact of removing the spikes in
the sensitivity solution and compare the different schemes designed in this context.

The paper is organised as follows: in the first sections, we introduce the state equations and
derive the sensitivity equations. Then, the modification of the sensitivity equations to account for
the Dirac delta functions is presented and the new sensitivity system is introduced. Next, we detail
the exact resolution of the Riemann problem for the state and sensitivity in a specific case, known as
the Sod shock tube problem. Some diffusive and anti-diffusive numerical schemes are illustrated: in
particular, for the state a Roe Riemann solver is proposed, and two different schemes are designed for
the sensitivity. Some numerical convergence tests are conducted, which exhibit grid-convergence issues
of the diffusive schemes and a faster convergence for the anti-diffusive ones. Finally, an uncertainty
quantification problem is defined and the results of the diffusive and anti-diffusive, with and without
correction term, are compared to the results of the Monte Carlo method.

1.1 The state system

The Euler system writes: 
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(u(ρE + p)) = 0,

(1)

where ρ is the density, u is the velocity, ρE the total energy per volume unit, and p the pressure.
The system is closed by the following algebraic equation:

p = (γ − 1)

(
ρE − 1

2
ρu2

)
, (2)

where γ = 1.4 is the heat capacity ratio. We introduce two other quantities which will be useful in

the following: the total enthalpy H = E + p
ρ

and the speed of sound c =
√

(γ − 1)(H − 1
2
u2) . We

can rewrite the system (1) in the vectorial form:

∂tU + ∂xF(U) = 0, (3)

where

U =

 ρ
ρu
ρE

 =

w1

w2

w3

 , F(U) =

 ρu
ρu2 + p
u(ρE + p)

 =


w2

w2
2

w1
+ (γ − 1)

(
w3 − 1

2

w2
2

w1

)
γ w2w3

w1
− (γ−1)

2

w3
2

w2
1

 .
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One can also write (1) in the nonconservative form:

∂tU + A(U)∂xU = 0, (4)

where the Jacobian matrix A writes:

A(U) =
∂F

∂U
=

 0 1 0
γ−3

2
u2 (3− γ)u γ − 1

γ−2
2
u3 − c2u

γ−1
3−2γ

2
u2 + c2

γ−1
γu

 ,
its eigenvalues are λ1 = u− c, λ2 = u, and λ3 = u+ c and its eigenvectors are:

r1 =

 1
u− c
H − uc

 , r2 =

 1
u
u2

2

 , r3 =

 1
u+ c
H + uc

 .
Therefore A is R-diagonalisable and the system (1) is strictly hyperbolic. At last, (3) will be supple-
mented with a given initial data U(x, t = 0) = U0(x), ∀x ∈ R.

1.2 The sensitivity system

Considering only smooth solutions of (1), one can apply the Continuous Sensitivity Equation (CSE)
[22, 4, 13] method which consists in differentiating (1) with respect to the parameter of interest a.
One can then formally exchange the derivatives in time and space with the ones with respect to a
(see [3] for the theoretical aspects) and obtain the following sensitivity system:

∂tρa + ∂x(ρu)a = 0,
∂t(ρu)a + ∂x(ρau

2 + 2ρuua + pa) = 0,
∂t(ρE)a + ∂x(ua(ρE + p) + u((ρE)a + pa)) = 0,

(5)

which can be written in vectorial form as

∂tUa + ∂xFa(U,Ua) = 0, (6)

where we used the following notation:

Ua = ∂aU =

 ρa
(ρu)a
(ρE)a

 , Fa(U,Ua) = ∂aF(U) =

 (ρu)a
ρau

2 + 2ρuua + pa
ua(ρE + p) + u((ρE)a + pa)

 .
Note that differentiating (2) one has:

pa = (γ − 1)((ρE)a −
1

2
ρau

2 − ρauua)

which acts as a closure relation for (5). The initial data for the sensitivity is Ua(x, t = 0) = ∂aU0(x).

1.3 The global system

In order to write the global system, i.e. the state and sensitivity system, in a more compact way, we
introduce the following vectors:

V =

[
U
Ua

]
=


w1

w2

w3

w4

w5

w6

 ,

G(V) =

[
F(U)

Fa(U,Ua)

]
=



w2

w2
2

w1
+ (γ − 1)

(
w3 − 1

2

w2
2

w1

)
γ w2w3

w1
− (γ−1)

2

w3
2

w2
1

)

w5

γ−3
2

w2
2w4

w2
1
− (γ − 3)w2w5

w1
+ (γ − 1)w6

γ w3w5
w1
− γ w2w3w4

w2
1
− 3

2
(γ − 1)

w2
2w5

w1
+ (γ − 1)

w3
2w4

w3
1

+ γ w2w6
w1


.
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Therefore, the complete system writes:{
∂tV + ∂xG(V) = 0,

V(x, 0) = V0(x),
(7)

with V0(x) = (U0(x), ∂aU0(x))t. The Jacobian matrix of the complete system has the following
form:

∂G(V)

∂V
= M(V) =

[
A 0
B A

]
where A is the Jacobian matrix of the state system and B writes:

B =

 0 0 0
(γ − 3)uua (3− γ)ua 0

(?) (•) γua

 , (8)

with

(?) = − c2

γ − 1

pa
p
u+

3

2
(γ − 2)u2ua +

c2

γ − 1

uρa
ρ
− c2

γ − 1
ua + γ

u3ρa
ρ

,

and

(•) =
γ

2
u2ρa −

c2

γ − 1
ρa +

6− 5γ

2

u2ρa
ρ

+ (3− 2γ)uua + 3(γ − 1)
uρa
ρ2

+
c2

γ − 1

pa
p
.

The matrix M has three repeated eigenvalues, which are the eigenvalues of the matrix A. More
precisely, one can prove the following result.

Proposition. 1. The global system (7) is weakly hyperbolic.

Proof. A system of the form (7) is weakly hyperbolic if its Jacobian matrix has real eigenvalues and
it is not R-diagonalisable. We want to investigate whether or not the matrix M is R-diagonalisable.
A matrix is diagonalisable if and only if its minimal polynomial splits in distinct roots. Since the
characteristic polynomial of the matrix M is the following:

pM (x) = (x− λ1)2(x− λ2)2(x− λ3)2, (9)

the minimal polynomial, in order to have distinct roots, can be at most of degree 3. Therefore, if M
is diagonalisable, it must be:

(M− λ1I6)(M− λ2I6)(M− λ3I6) = 0. (10)

Let us write (10) by blocks:[
A− λ1I3 0

B A− λ1I3

] [
A− λ2I3 0

B A− λ2I3

] [
A− λ3I3 0

B A− λ3I3

]
= 0 (11)

Developing the left-hand side products one obtains the following matrix:[
(A− λ1I3)(A− λ2I3)(A− λ3I3) 0

(�) (A− λ1I3)(A− λ2I3)(A− λ3I3)

]
, (12)

where

(�) = B(A− λ2I3)(A− λ3I3) + (A− λ1I3)B(A− λ3I3) + (A− λ1I3)(A− λ2I3)B.

The top-left and bottom-right coefficients are equal to the characteristic polynomial of A evaluated
in A, thus they are zero. Therefore, the matrix M is diagonalisable if and only if (�) = 0. Let us
compute the coefficient (1, 1) of (�):

(�)(1,1) = 0 + [c− u, 1, 0]

 0

(3− γ)u2ua − (γ−3)2

2
u2ua

♦

+

+[c− u, 1, 0]

 (γ − 3)uua
(γ − 2)(3− γ)u2ua + (γ − 1)(?)

M

 =

= −3

2
(γ − 1)u2ua + (γ − 3)cuua − c2u

pa
p

+ c2u
ρa
ρ
− c2ua + γ(γ − 1)u3 ρa

ρ
,

where there is no need to specify ♦ and M. There is no reason why the quantity should be always
be zero. Therefore, the matrix is not diagonalisable and the complete system is not hyperbolic in
general. However, as the eigenvalues are real, the system is weakly hyperbolic.

4



2 Source term

The sensitivity system (5) was derived assuming that the state solution U is regular. However, this is
not generally true for hyperbolic systems such as the one considered [3]: if the state is discontinuous,
the sensitivity exhibits Dirac delta functions. As said earlier, different choices are possible: some
authors have tried to adapt their numerical schemes in order to deal with the Dirac functions [9, 11,
15], some others added a correction term to the sensitivity equations [16, 17]. We decide to adopt the
second strategy, as done in [5], that leads to an accurate sensitivity almost everywhere in the domain,
except for the discontinuity points. The correction term that we add to the sensitivity equations has
the following form:

S =

Ns∑
k=1

δkρρρk, (13)

where Ns is the number of discontinuities, which can be either shocks or contact discontinuities,
δk = δ(x − xk,s(t)) is the Dirac delta function with xk,s(t) position of the k−th shock and ρρρk is
the amplitude of the k−th correction. To compute the amplitude ρρρk(t), we start by integrating the
sensitivity equations with the source term on a control volume which contains a single discontinuity
travelling at speed σk. As the control volume goes to zero, one has:

ρρρk = (U−a,k −U+
a,k)σk + Fa(U+

k ,U
+
a,k)− Fa(U−k ,U

−
a,k), (14)

where U+
k,a (respectively U−k,a ) is the value of the sensitivity to the right (respectively left) of the

k−th discontinuity. Then, one writes the Rankine-Hugoniot relations associated with (3)

−σk(U+
k −U−k ) + F(U+

k )− F(U−k ) = 0,

where U+
k (respectively U−k ) is the value of the state to the right (respectively left) of the k−th

discontinuity. If we differentiate these conditions with respect to a, we obtain:

(U−k,a −U+
k,a)σk + (U−k −U+

k )σk,a + σk(∂xU
+ −k ∂xU−k )∂axk,s(t) =

= Fa(U−k ,U
−
a,k)− Fa(U+

k ,U
+
a,k) +

(
∂F(U+

k )

∂U
∂xU

+
k −

∂F(U−k )

∂U
∂xU

−
k

)
∂axk,s(t),

(15)

where σk,a := ∂aσk. Replacing (15) into (14), one obtains the following definition of ρρρk, which does
not depend on the sensitivity itself:

ρρρk = (U+ −U−)σk,a + σk(∂xU
+ − ∂xU−)∂axk,s(t)−

(
∂F(U+)

∂U
∂xU

+ − ∂F(U−)

∂U
∂xU

−
)
∂axk,s(t).

(16)
The terms depending on ∂axk,s(t) are very difficult to estimate. However, one can remark that all
these terms contain ∂xU

±
k : therefore, in the following sections, when we design first order finite

volume schemes for the sensitivity we will consider the simpler expression

ρρρk(t) = σk,a(U+
k −U−k ), (17)

since the solution, in a first order finite volume framework, is piecewise constant on the cells and
therefore ∂xU

±
k = 0. Replacing (17) into (13) gives the following definition of the source term (valid

only for piecewise constant functions):

S =

Ns∑
k=1

σk,a(U+
k −U−k )δk. (18)

A special treatment, which will be detailed later, is necessary for a second or higher order dis-
cretisation, where the discrete solution is not constant within each cell and therefore ∂xU

±
k 6= 0.

The new system thus writes: {
∂tU + ∂xF(U) = 0

∂tUa + ∂xFa(U,Ua) = S.
(19)

In the next section, we design a numerical scheme to approximate the solution of (19). The analytical
solution for a given initial data of Riemann type is detailed in appendix A.
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xj−1/2 xj+1/2

∆x

xj

Cj

Figure 1: Spatial discretisation.

3 Numerical methods

In this section we consider the numerical approximation of (19). We derive first and second order
Roe-type numerical schemes and we pay particular attention to the numerical diffusion effects induced
by these approaches. Indeed and as we will see it may prevent the numerical solution from converging
to the correct solution. We consider a uniform grid in space with a constant step ∆x, xj is the center
of the j−th cell Cj , whose extrema are xj−1/2 and xj+1/2 (cf. Figure 1). We use an adaptive time
step ∆tn, chosen according to a CFL condition, and the intermediate times are tn+1 = tn + ∆tn. We
indicate with Vn

j = (Un
j ,U

n
a,j)

t the average value of the state and the sensitivity in the cell Cj at
time tn.

We use Godunov-type schemes, which consist of two main steps: first, one solves the Riemann
problem at each interface xj−1/2 at time tn, obtaining in this way a solution at time tn+1, v(x, tn+1) =
(u(x, tn+1),ua(x, tn+1))t; the second step is to project v(x, tn+1) in order to obtain a piecewise
constant solution on the mesh. How to compute v(x, t) is the topic of the next subsections: first we
describe an approximate solver for the state and then two for the sensitivity. Different choices for the
solution of the Riemann problem lead to different numerical schemes. Then, we explain two different
projection techniques: the classical one and an anti-diffusive one. Finally, we explain how to extend
the schemes to higher order in space, focusing in particular on the second order.

3.1 Riemann solver for the state

First, we consider the state system, for which the classical numerical schemes can be used: in this
work we used the approximate Riemann solver of Roe, because it has the property of being exact for
an isolated shock and we want to be as precise as possible in the shocks. In addition, we remark that
it would not be possible to use a solver with only one intermediate star state, such as HLL (Harten,
Lax and van Leer [21]), because of the definition of the source term (17): two intermediate states
are necessary in order to be able to compute the correction term across the contact discontinuity (cf.
Figures 2-3 for the structure of different solvers).

The main idea of the Roe scheme is to replace the Jacobian matrix A(U) in (4) with a constant
matrix A(UL,UR), obtaining in this way a linearised system, whose solution to the Riemann problem
can be computed exactly. For the Euler system, a proper linearisation is provided by Roe in the
original paper [28]. Furthermore, there is no need to assemble the matrix, it is sufficient to know its
eigenvalues and eigenvectors, which are the following:

λROE1 = ũ− c̃, λROE2 = ũ, λROE3 = ũ+ c̃,

r̃1 =

 1
ũ− c̃
H̃ − ũc̃

 , r̃2 =

 1
ũ
ũ2

2

 , r̃3 =

 1
ũ+ c̃

H̃ + ũc̃

 .

The quantities denoted with a tilde are Roe averaged quantities defined as follows:

ũ =

√
ρL uL +

√
ρR uR√

ρL +
√
ρR

, H̃ =

√
ρL HL +

√
ρR HR√

ρL +
√
ρR

, c̃ =

√
(γ − 1)

(
H̃ − 1

2
ũ2

)
.

Therefore, the Roe solver consists of four constant states (UL, U∗L, U∗R, and UR, cf. Figure 2)
connected by three discontinuities travelling at speeds λROEi . To compute the star states U∗L and
U∗R, first we decompose the jump UR −UL along the eigenvectors of the Jacobian matrix A:

∆U = UR −UL =

3∑
i=1

αir̃i. (20)
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λROE
1 λROE

2 λROE
3

x

t

xc

UL

U∗
L U∗

R

UR

Figure 2: Structure of the Roe solver for the state.

λROE
1 λROE

3

x

t

xc

Ua,L

U∗
a

Ua,R

Figure 3: Structure of the HLL-type solver for the sensitivity.

The relation (20) is used to compute the coefficients αi, then one has:

U∗L = UL + α1r̃1 = UR − α2r̃2 − α3r̃3, U∗R = UR − α3r̃3 = UL + α1r̃1 + α2r̃2. (21)

Once all the quantities U∗L, U∗R, and λROE` are known at each interface xj−1/2, u(x, tn+1) can be
built by juxtaposition of the solutions of each Riemann problem.

It is well known that, in case of transonic rarefaction, the Roe solver provides a non-entropic
solution. To overcome this problem, we implemented the entropic fix proposed in [20].

3.2 Riemann solvers for the sensitivity

For the sensitivity we propose two different strategies. Indeed and as explained in the previous
section, for the state it is necessary to use a Riemann solver with two different star states, in order
to be able to compute the source term across the contact discontinuity. However, for the sensitivity
an HLL-type approach can be used, which gives a first strategy. Another possible strategy is to keep
for the sensitivity the same structure as for the state, and therefore to have an HLLC-type scheme
(Harten, Lax and van Leer Contact [29]). A third possibility which we will not analyse here, explored
in detail in [2], is to rewrite the sensitivity flux in such a way that the same Roe Riemann solver used
for the state can be applied for the sensitivity. Let us now describe the two possibilities considered
in detail.

HLL-type scheme

The first Riemann solver proposed for the sensitivity has a simpler structure than the state solver:
we neglect the contact discontinuity, therefore the solver consists only of three constant states (Ua,L,
U∗a, and Ua,R) connected by two discontinuities travelling at speeds λROE1 and λROE3 (cf. Figure 3).
The star value of the sensitivity U∗a at the interface j−1/2 can be computed directly from the Harten,
Lax and van Leer conditions [21] applied to system of conservation laws with source terms. We get:

U∗a,j−1/2 =
1

λROE3 − λROE1

(
λROE3 Un

a,j − λROE1 Un
a,j−1

−Fa(Uj ,Ua,j) + Fa(Uj−1,Ua,j−1) + Sj−1/2

)
,

(22)
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where the source term is discretised as follows:

Sj−1/2 = ∂aλ
ROE
1,j−1/2(U∗L,j−1/2 −Uj−1)d1,j−1/2 + ∂aλ

ROE
2,j−1/2(U∗R,j−1/2 −U∗L,j−1/2)

+∂aλ
ROE
3,j−1/2(Uj −U∗R,j−1/2)d3,j−1/2,

where d`,j−1/2 are shock detectors, d`,j−1/2 = 1 if there is an `−shock at the interface j − 1/2, it is
zero otherwise. They are based on the fact that the velocity u is always decreasing across a shock,
whilst the density ρ is increasing across a 1−shock and it is decreasing across a 3−shock:

d1,j−1/2 =

{
1 if ρj > ρj−1 and uj < uj−1,

0 otherwise,
d3,j−1/2 =

{
1 if ρj < ρj−1 and uj < uj−1,

0 otherwise.

Furthermore, we remark that there is no need for a contact detector because it is known that the
middle wave is always a contact discontinuity.

Such a discretisation of the source term comes directly from (18), if one considers the fact that a
Riemann problem can have at most three discontinuities.

HLLC-type scheme

Another possible approach for the sensitivity is to keep the same structure as for the state (cf.
Figure 2), with the same speeds of propagation for the three discontinuities. We need to compute
the two intermediate constant states U∗a,L and U∗a,R. Again, a possible strategy to compute U∗a,L
and U∗a,R is to follow the Harten, Lax and van Leer formalism with source term and to impose the
following linear system, made of Rankine-Hugoniot jump relations:

−λ1(ρ∗a,L − ρa,L) + (ρu)∗a,L − (ρu)a,L = ∂aλ1(ρ∗L − ρL),

−λ2(ρ∗a,R − ρ∗a,L) + (ρu)∗a,R − (ρu)∗a,L = ∂aλ2(ρ∗R − ρ∗L),

−λ3(ρa,R − ρ∗a,R) + (ρu)a,R − (ρu)∗a,R = ∂aλ3(ρR − ρ∗R),
(γ−3)

2
ũ2(ρ∗a,R − ρ∗a,L) + (2− γ)ũ((ρu)∗a,R − (ρu)∗a,L)

+(γ − 1)((ρE)∗a,R − (ρE)∗a,L) = ∂aλ2((ρu)∗R − (ρu)∗L),

(λ2 − λ1)(ρu)∗a,L + (λ3 − λ2)(ρu)∗a,R + λ1(ρu)a,L − λ3(ρu)a,R

+Fa,R|2 − Fa,L|2 = ∆xS|2,
(λ2 − λ1)(ρE)∗a,L + (λ3 − λ2)(ρE)∗a,R + λ1(ρE)a,L − λ3(ρE)a,R

+Fa,R|3 − Fa,L|3 = ∆xS|3,

(23)

where λ1 = ũ − c̃, λ2 = ũ, and λ3 = ũ + c̃. The first three equations are the Rankine-Hugoniot
condition on ρ across the three waves, differentiated with respect to a. Note that summing up these
equations gives the integral condition of the Harten, Lax and van Leer formalism of the density
variable. The fourth equation is the Rankine-Hugoniot condition on ρu for the linearised system
differentiated with respect to a; the last two equations are the integral conditions on the sensitivities
(ρu)a and (ρE)a. If we define the following vectors

x = (ρ∗a,L, ρ
∗
a,R, (ρu)∗a,L, (ρu)∗a,R, (ρE)∗a,L, (ρE)∗a,R)t

b =


b1
b2
b3
b4
b5
b6

 =


∂aλ1(ρ∗L − ρL) + (ρu)a,L − λ1ρa,L

∂aλ2(ρ∗R − ρ∗L)
∂aλ3(ρR − ρ∗R)− (ρu)a,R + λ3ρa,R

∂aλ2((ρu)∗R − (ρu)∗L)
∆xS|2 − λ1(ρu)a,L + λ3(ρu)a,R − Fa,R|2 + Fa,L|2
∆xS|3 − λ1(ρE)a,L + λ3(ρE)a,R − Fa,R|3 + Fa,L|3


the system can be rewritten as:

Ax = b,

where A is the following matrix:

A =



−λ1 0 1 0 0 0
λ2 −λ2 −1 1 0 0
0 λ3 0 −1 0 0

− (γ−3)
2

ũ2 (γ−3)
2

ũ2 −(2− γ)ũ (2− γ)ũ −(γ − 1) (γ − 1)
0 0 c̃ c̃ 0 0
0 0 0 0 c̃ c̃


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and we have det(A) = 4c̃4(γ − 1) 6= 0. The solution of the system has the following form:

x =



(2c̃+ũ)b1+(c̃+ũ)b2+ũb3−b5
2c̃2

−ũb1+(c̃−ũ)b2+(2c̃−ũ)b3+b5
2c̃2

(ũ2+c̃ũ)b1+(ũ2−c̃2)b2+(ũ2−c̃)ũb3+(c̃−ũ)b5
2c̃2

−(ũ2+c̃ũ)b1+(c̃2−ũ2)b2+(c̃ũ−ũ2)b3+(c̃+ũ)b5
2c̃2

(γ−1)(ũ3+c̃ũ2)b1+((γ−1)ũ3+2(2−γ)c̃2ũ)b2+(γ−1)(ũ3−c̃ũ2)b3−2c̃2b4−(γ−1)ũ2b5+2(γ−1)c̃b6
4(γ−1)c̃2

−(γ−1)(ũ3+c̃ũ2)b1−((γ−1)ũ3+2(2−γ)c̃2ũ)b2+(γ−1)(c̃ũ2−ũ3)b3+2c̃2b4+(γ−1)ũ2b5+2(γ−1)c̃b6
4(γ−1)c̃2


An alternative strategy to compute U∗a,L and U∗a,R is to differentiate with respect to a the following
relations:

U∗L = UL + α1r1, U∗R = UR − α3r3, (24)

obtaining
U∗a,L = Ua,L + αa,1r1 + α1ra,1, U∗a,R = Ua,R − αa,3r3 − α3ra,3, (25)

with

r1 =

 1
ũ− c̃
H̃ − ũc̃

 , ra,1 =

 0
ũa − c̃a

H̃a − ũac̃− ũc̃a

 ,

r2 =

 1
ũ
ũ2

2

 , ra,2 =

 0
ũa
ũũa

 ,

r3 =

 1
ũ+ c̃

H̃ + ũc̃

 , ra,3 =

 0
ũa + c̃a

H̃a + ũac̃+ ũc̃a

 ,


α2 =

γ − 1

c̃2

[
(ρR − ρL)(H̃ − ũ2) + ũ

(
(ρu)R − (ρu)L

)
−
(

(ρE)R − (ρE)L
)]
,

α1 =
1

c̃

[
(ρR − ρL)(ũ+ c̃)−

(
(ρu)R − (ρu)L

)
− c̃α2

]
,

α3 = (ρR − ρL)− (α1 + α2),

αa,2 = −2c̃a(γ − 1)

c̃3

[
(ρR − ρL)(H̃ − ũ2) + ũ

(
(ρu)R − (ρu)L

)
−
(

(ρE)R − (ρE)L
)]

+
γ − 1

c̃2

[
(ρa,R − ρa,L)(H̃ − ũ2) + (ρR − ρL)(H̃a − 2ũũa)

+ũa
(

(ρu)R − (ρu)L
)
−
(

(ρE)R − (ρE)L
)

+ ũ
(

(ρu)a,R − (ρu)a,L
)
−
(

(ρE)a,R − (ρE)a,L
)]
,

αa,1 = − c̃a
c̃2

[
(ρR − ρL)(ũ+ c̃)− ((ρu)R − (ρu)L)− c̃α2

]
+

1

2c̃

[
(ρa,R − ρa,L)(ũ+ c̃) + (ρR − ρL)(ũa + c̃a)− ((ρu)a,R − (ρu)a,L)− c̃aα2 − c̃αa,2

]
,

αa,3 = (ρa,R − ρa,L)− (αa,1 + αa,2).

The next proposition states that the two strategies to define U∗a,L and U∗a,R are equivalent.

Proposition. 2. The star sensitivities (25) solve the system (23).

Proof. We will prove that the star sensitivities defined in (25) satisfy the system (23).

1. First equation. Writing the first coefficient of (24) one easily finds ρ∗L − ρL = α1, and writing
the first two coefficient of (25) one finds:

ρ∗a,L − ρa,L = αa,1, (ρu)∗a,L − (ρu)a,L = αa,1(ũ− c̃) + α1(ũa − c̃a).
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We now replace these three expressions in the first equation of (23) and we obtain:

−λ1αa,1 + αa,1(ũ− c̃) + α1(ũa − c̃a) = ∂aλ1α1,

which is always verified, since λ1 = ũ− c̃.
2. Second equation. We recall that

UR −UL =

3∑
i=1

αiri, Ua,R −Ua,L =

3∑
i=1

αa,iri + αira,i.

Therefore, one has:

U∗R −U∗L = α2r2, U∗a,R −U∗a,L = αa,2r2 + α2ra,2,

which gives us the following relations:

ρ∗R − ρ∗L = α2, ρ∗a,R − ρ∗a,L = αa,2, (ρu)∗a,R − (ρu)∗a,L = αa,2ũ+ α2ũa.

We now replace them in the second equation of (23) and we obtain:

−λ2αa,2 + αa,2ũ+ α2ũa = ∂aλ2α2,

which is always verified, since λ2 = ũ.

3. Third equation. As we did for the first two equations, one can find the three following expres-
sions:

ρR − ρ∗R = α3, ρa,R − ρ∗a,R = αa,3, (ρu)a,R − (ρu)∗a,R = αa,3(ũ+ c̃) + α2(ũa + c̃a).

By replacing them in the third equation of (23) one can easily check that the equation is always
verified, since λ3 = ũ+ c̃.

4. Fourth equation. As we did for the previous equations, one can find the three following expres-
sions:

(ρu)∗R − (ρu)∗L = α2ũ, ρ∗a,R − ρ∗a,L = αa,2, (ρu)∗a,R − (ρu)∗a,L = αa,2ũ+ α2ũa,

(ρE)∗a,R − (ρE)∗a,L = αa,2
ũ2

2
+ α2ũũa.

By replacing them in the fourth equation of (23) one can easily check that the equation is always
verified, since λ2 = ũ.

5. Fifth and sixth equations. The last two equations are the last two components of the following
vectorial equation:

(λ2 − λ1)U∗a,L + (λ3 − λ2)U∗a,R + λ1Ua,L − λ3Ua,R + Fa,R − Fa,L = ∆xS,

which can be rewritten as:

λ1(Ua,L −U∗a,L) + λ2(U∗a,L −U∗a,R) + λ3(U∗a,R −Ua,R) + Fa,R − Fa,L = ∆xS.

Replacing the definitions (25) one finds:

−λ1(αa,1r1 + α1ra,1)− λ2(αa,2r2 + α2ra,2)− λ3(αa,3r3 + α3ra,3) + Fa,R − Fa,L = ∆xS.

We recall that by definition of Roe fluxes, one has:

FR − FL =

3∑
i=1

αiλiri ⇒ Fa,R − Fa,L =
3∑
i=1

αa,iλiri + αiλa,iri + αiλira,i.

Therefore, we obtain:

∆xS =

3∑
i=1

αiλa,iri = λa,1(U∗L −UL) + λa,2(U∗R −U∗L) + λa,3(UR −U∗R),

which is consistent with our discretisation of the source term.

Finally, one can obtain ua(x, tn+1) by juxtaposition, as we did for the state.
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3.3 Projection step

The projection step is usually performed by averaging on the cell the solution v(x, tn+1), whose
components u(x, tn+1) and ua(x, tn+1) can be computed as described in the previous sections.

Vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v(x, tn+1)dx. (26)

We remark that the integral (26) is easy to compute, v being piecewise constant. However, this
projection method introduces numerical diffusion. As shown in [5], numerical diffusion plays a fun-
damental role in the discretisation of the sensitivity, especially across shocks. For this reason, we
propose another projection method, introduced in [6] and inspired by Glimm’s method [14, 7]. First,
we define a staggered mesh, whose cells will be denoted C

n
j , as follows:

C
n
j = (x̄nj−1/2, x̄

n
j+1/2), x̄nj−1/2 = xj−1/2 + σnj−1/2∆tn,

where σnj−1/2 is a proper speed, defined in order to avoid averaging across a shock. Numerical results
show that there is no need to move the mesh for the contact discontinuity (cf. section 4). The
definition of σnj−1/2 is the following:

σnj−1/2 =


λROE1,j−1/2 if d1,j−1/2 = 1,

λROE3,j−1/2 if d3,j−1/2 = 1,

0 otherwise,

where d`,j−1/2 are the shock detectors defined earlier.
The second step is to perform the average on the staggered mesh, obtaining in this way an

intermediate solution V
n+1
j :

V
n+1
j =

1

∆xnj

∫ x̄j+1/2

x̄j−1/2

v(x, tn+1)dx, (27)

where ∆xnj = x̄j+1/2 − x̄j−1/2. Finally, the last step is a sampling step, in order to go back to the
initial uniform grid. Let (βn) be a random sequence varying in (0, 1), for instance βn ∼ U([0, 1]);
then:

Vn+1
j =


V
n+1
j−1 if βn+1 ∈

(
0, ∆t

∆x
max(σnj−1/2, 0)

)
,

V
n+1
j if βn+1 ∈

[
∆t
∆x

max(σnj−1/2, 0), 1 + ∆t
∆x

min(σnj+1/2, 0)
)
,

V
n+1
j+1 if βn+1 ∈

[
1 + ∆t

∆x
min(σnj+1/2, 0), 1

)
.

(28)

We remark that one βn is drawn at each time step and it is the same for all the cells. The method
is proven to be convergent even if a low discrepancy deterministic sequence is used. In this work, we
use the van der Corput sequence (cf. [6]):

βn =

m∑
k=0

ik2−(k+1), n =

m∑
k=0

ik2k,

where ik = 0, 1 is the binary expansion of the integers.

3.4 Second order extension

In this section, we extend to the second order the schemes presented above. In time, we use a standard
two steps Runge-Kutta method, whilst in space we use a MUSCL-type (Monotonic Upstream-centered
Scheme for Conservation Laws, [31]) approach, inspired from [5]. In a few words (we refer to [5] for
more details) the main idea of a MUSCL-type scheme is to consider in replacement of a constant value
Vn
j in each cell, a higher order polynomial Vn

j (x), x ∈ [xj−1/2, xj+1/2]. The edge values Vn
j (xj+1/2),

Vn
j+1(xx+1/2) are used as left and right values for the Riemann problem at the interface j + 1/2; the

Riemann problem is then solved as explained in the previous section. However, the definition of the
source term (13)-(17) is valid only if the state is piecewise constant (cf. [5]). Therefore, we suggest
to consider a piecewise constant state on half of each cell: these two constant values will be denoted
Vn
j±1/4 and correspond to the edge values Vn

j (xj±1/2) (see Figure 4). In this work, we compute the
edge values with a standard approach:

Vn
j±1/4 = Vn

j ±∆Vn
j ,
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xxj−3/2 xj−1/2 xj+1/2 xj+3/2

Vj−5/4

Vj−3/4

Vj−1/4

Vj+1/4

Vj+3/4
Vj+5/4

Figure 4: MUSCL discretisation. Dashed red line: first order discretisation. Dotted blue line: classical
second order discretisation. Solid black line: second order discretisation used in this work.

Diffusive Anti-diffusive

1st order ROE I ROE I AD
2nd order ROE II ROE II AD

(a) State schemes.

Diffusive Anti-diffusive

1st order HLL I HLL I AD
2nd order HLL II HLL II AD

(b) Sensitivity HLL schemes.

Diffusive Anti-diffusive

1st order HLLC I HLLC I AD
2nd order HLLC II HLLC II AD

(c) Sensitivity HLLC schemes.

Table 1: Numerical schemes summary.

and usual choice for ∆Vn
j is to use a slope-limiter procedure, for instance:

∆Vn
j =

1

2
minmod(Vn

j+1 −Vn
j ,V

n
j −Vn

j−1),

where

minmod(a, b) =

{
sgn(a) min(|a|, |b|) if ab > 0,

0 otherwise.

We remark that this approach leads to an additional Riemann problem in the middle of the cell: in
this way we are able to extend the scheme accuracy to second-order, while keeping piecewise constant
representations in the cells, which is necessary to make the terms containing ∂xU

± vanishing in (15).

3.5 Summary

Here, we briefly sum up all the ingredients introduced in this section and we clarify how they can be
combined to obtain different numerical schemes:

• Order of the scheme. In this paper we focused on first and second order schemes, but higher
order can be used bearing in mind that the state needs to be piecewise constant for the definition
of the source term to be valid.

• Riemann solver for the state. In this paper we proposed the Roe Riemann solver for the state,
but the only constraint is to use a solver with two intermediate states U∗L and U∗R (for instance,
HLL could not be used for the state).

• Riemann solver for the sensitivity. We designed two different numerical schemes for the sensi-
tivity: an HLL and HLLC-type scheme.

• Type of projection. Either the classical projection or the anti-diffusive projection can be used.
Numerical results in the next section will show that, for this problem, diffusive scheme does not
converge to the analytical solution.

Finally, we remark that these four choices are independent of each other. In table (1) we summarize
all the combinations used in this work, with the labels used in the next sections.
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10−5 10−4 10−3 10−2

10−4

10−3

10−2 Roe I
Roe II

Roe I AD
Roe II AD

(a) ‖ρ(x, T )− ρex(x, T )‖L1

10−5 10−4 10−3 10−2

10−5

10−4

10−3

10−2

(b) ‖u(x, T )− uex(x, T )‖L1

10−5 10−4 10−3 10−2

10−5

10−4

10−3

10−2

(c) ‖p(x, T )− pex(x, T )‖L1

Figure 5: Convergence test for the state. The Roman numerals I and II stand for the order of the scheme.
AD stands for anti-diffusive.

10−5 10−4 10−3 10−2

10−3

10−2

HLL I
HLL II

HLL I AD
HLL II AD

(a) ‖ρa(x, T )− ρa,ex(x, T )‖L1

10−5 10−4 10−3 10−2

10−3

10−2

(b) ‖ua(x, T )− ua,ex(x, T )‖L1

10−5 10−4 10−3 10−2

10−3

10−2

(c) ‖pa(x, T )− pa,ex(x, T )‖L1

Figure 6: Convergence test for the sensitivity - HLL-type scheme.

10−5 10−4 10−3 10−2

10−3

10−2

HLLC I
HLLC II

HLLC I AD
HLLC II AD

(a) ‖ρa(x, T )− ρa,ex(x, T )‖L1

10−5 10−4 10−3 10−2

10−3

10−2

(b) ‖ua(x, T )− ua,ex(x, T )‖L1

10−5 10−4 10−3 10−2

10−3

10−2

(c) ‖pa(x, T )− pa,ex(x, T )‖L1

Figure 7: Convergence test for the sensitivity - HLLC-type scheme.
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Roe I

Roe I AD

(a) ρ(x, T )

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) u(x, T )

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(c) p(x, T )

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

(d) ρa(x, T )

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

(e) ua(x, T )

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 Exact
HLL I

HLL I AD

(f) pa(x, T )

Figure 8: First order schemes, with and without numerical diffusion. HLL-type scheme for the sensitivity.

4 Convergence tests for the numerical schemes

We consider the Riemann problem described in appendix A. The initial data for the state on the
physical variables is the following:

ρL = 1, uL = 0, pL = 1, ρR = 0.125, uR = 0, pR = 0.1.

We consider as parameter of interest a = pL, therefore the initial data for the sensitivity is:

ρa,L = ρa,R = ua,L = ua,R = pa,R = 0, pa,L = 1.

In Figures 5-6-7 we show the convergence of the different numerical schemes presented in Section 3.
Figure 5 shows the convergence for the state: the rate of convergence is the expected one; one can
remark that the antidiffusive schemes are slightly less precise than the diffusive ones. In Figures 6-7
we plot the error for the sensitivity, first with the HLL-type scheme (Figure 6) and then with the
HLLC-type scheme (Figure 7): considering two different star regions for the sensitivity does not seem
to make much difference; however one can remark the same effect shown in [5] for a simpler system:
the diffusive schemes do not converge for the sensitivity, this is especially evident for the variable ρa.
In Figure 8 we plot the solution at the final time T = 0.1, obtained with a mesh ∆x = 10−3 with
the first order schemes, both diffusive and antidiffusive (for the sensitivity, the HLL-type scheme has
been used): one can notice that the plateau in the right-star zone is not properly captured by the
diffusive scheme. This does not change as one refines the mesh, nor with a higher order scheme,
as one can see from Figure 9. In Figure 10 we compare the antidiffusive schemes, first and second
order: for the state, the difference is noticeable mainly in the contact discontinuity (therefore only for
ρ), whilst for the sensitivity the difference is significant in the neighbourhood of the discontinuities
before and after the rarefaction. Finally, in Figure 11 we compare the HLL and the HLLC-type
schemes for the sensitivity: as anticipated by the error plots, the two schemes are almost equivalent
in terms of results; the difference between the solutions provided by the two second order schemes
in L∞−norm is 0.0096, 0.0139, and 0.0062 respectively for ρa, ua, and pa and this is why they are
almost indistinguishable in Figure 11. For this reason, the use of HLL-type scheme is preferable,
being less expensive from a computational point of view and less complicated to implement.

14



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Exact
Roe II

Roe II AD

(a) ρ(x, T )
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(b) u(x, T )

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8
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(c) p(x, T )
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−0.4

−0.2

0

(d) ρa(x, T )

0 0.2 0.4 0.6 0.8 1
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0.4

0.6

(e) ua(x, T )
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Figure 9: Second order schemes, with and without numerical diffusion. HLL-type scheme for the sensi-
tivity.
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Figure 10: First and second order schemes, without numerical diffusion. HLL-type scheme for the
sensitivity.
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Figure 11: Second order antidiffusive schemes: HLL and HLLC comparison.

5 Uncertainty Quantification

5.1 Problem description

In this section, we show how the estimated sensitivities can be used for uncertainty propagation, i.e.
estimate statistical moments of the solution accounting for some uncertain parameters [27, 30, 10].
We want to provide a demonstration of one of the many possible applications of the CSE method, in
order to underline the potentials of the proposed approach and its limitations, too. We also intend to
quantify the impact of removing the spikes from the sensitivity solution. Many techniques have been
developed during the last decades to propagate uncertainty through PDE models: these methods can
be either probabilistic or deterministic. The proposed method based on derivatives estimation falls
into the second category, while the most well-known of these techniques, the Monte Carlo method,
is in the first. Other techniques are for instance polynomial chaos [32, 34, 24, 11], or the random
space partition [1]. A very good review and comparison of many techniques with applications to
fluid dynamics can be found in [33]. A typical objective of uncertainty propagation is to determine
a confidence interval for the output of a model, in our case U, given the uncertainty on the input
parameters. This estimation is part of the broader domain of Uncertainty Quantification (UQ),
which also includes the identification of the most critical uncertain parameters, their ranking, and
the analysis of the variability of the output.

In this work, we compare the Monte Carlo approach and a sensitivity-based estimation. In the
following, X will stand for one of the variables, i.e. X can either be ρ, u or p, andXa the corresponding
sensitivity. We use the notation µX to indicate the average of the variable X and σ2

X for its variance.
Once this two quantities are known, one can build a confidence interval for the variable X as:

CIX = [µX − κσX , µX + κσX ]. (29)

We remark that (29) is valid only for gaussian data. The coefficient κ regulates the amplitude of the
interval and it is related to the probability for the variable X to actually fall in the interval. For
instance, the choice κ = 1.96 provides a 95% confidence interval, while κ = 2.58 a 99% one.

Monte Carlo method. Here we briefly introduce the Monte Carlo method, for more details
see for instance [8]. The Monte Carlo method is a probabilistic technique: to obtain an estimate of
the average and of the standard deviation one needs to perform multiple random simulations. Let a
be the vector of uncertain parameters, with a known distribution. Then, N random samples ai are
drawn from this distribution, and for each ai the corresponding solution Xi is computed. Then, the
unbiased average and variance estimators are used:

µX =
1

N

N∑
i=1

Xi, σ2
X =

1

N − 1

N∑
i=1

(µX −Xi)2.

These estimates are good if N is sufficiently large: the slow convergence, and therefore the high
computational cost, is probably the main limitation of the Monte Carlo method.

Sensitivity-based method. Once the sensitivities of the solution with respect to the input
parameters are known, a deterministic estimation of the average µX and of the variance σ2

X of the
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output X can be easily obtained. Let µa be the average of the uncertain vector a and σa the covariance
matrix:

µa =

 µa1...
µaM

 , σa =


σ2
a1 cov(a1, a2) . . . cov(a1, aM )

cov(a1, a2) σ2
a2 . . . cov(a2, aM )

...
. . .

...
cov(a1, aM ) . . . σ2

aM

 ,
where M is the number of uncertain parameters, µai the average of the i−th parameter, σ2

ai its
variance and cov(·, ·) the covariance. Let us consider the first order Taylor expansion for the variable
X with respect to the vector of parameters a:

X(a) = X(µa) +

M∑
i=1

(ai − µai)Xai(µa) + o(‖a‖2).

Then computing the average, since X(µa) and Xai(µa) are not random variables, at first order one
gets:

µX = E[X(a)] = X(µa) +

M∑
i=1

Xai(µa)E[ai − µai ] = X(µa),

because E[(ai − µai)] = 0. In the same way, one can compute the variance:

σ2
X = E[(X(a)− µX)2] = E

( M∑
i=1

Xai(µa)(ai − µai)

)2
 =

=

M∑
i=1

X2
ai(µa)E[(ai − µai)

2] +

M∑
i,j=1
i6=j

Xai(µa)Xaj (µa)E[(ai − µai)(aj − µaj )].

Therefore, we obtain the following first order estimates of the average and the variance of the variable
X:

µX = X(µa), σ2
X =

M∑
i=1

X2
aiσ

2
ai +

M∑
i,j=1
i6=j

XaiXaj cov(ai, aj).

Higher order estimates require higher order sensitivities [25].

5.2 Numerical results

We applied the uncertainty propagation techniques described in the previous subsection to the test
case described in appendix A. The uncertain parameters are the left and right values of the physical
variables for the state, i.e.:

a = (ρL, ρR, uL, uR, pL, pR)t,

and have a Gaussian distribution with the following average and covariance matrix:

µa = (1, 0.125, 0, 0, 1, 0.1)t, σa = diag(0.001, 0.000125, 0.0001, 0.0001, 0.001, 0.0001).

This choice means that all the parameters are uncorrelated and we chose as their variance the 0.1%
of their average, except for the velocity, whose average is 0.

We remark that the fact that the parameters follow a Gaussian distribution does not say anything
about the distribution of the output of the model. Therefore, before using the confidence interval
(29), one should check that the output is Gaussian, too. In Figures-12-13-14, three histograms are
shown for each physical variable: for x = 0.35 (i.e. in the middle of the rarefaction wave), for x = 0.6
(i.e. in the middle plateau) and for x = 0.85 (i.e. close to the shock position). The histograms are
obtained by computing the analytical solution for 5000 different values of the parameter vector a,
which are sampled from its distribution. The histograms are then normalised with respect to the
probability density function, using the MATLAB option ‘normalization’, ‘pdf’. As one can see, the
output is Gaussian when far from the shock; close to the shock, two distinct groups of points can be
identified. The distribution predicted with the SA is drawn in red: the prediction is wrong in the
neighbourhood of the shock, as as; it fits perfectly in the plateau and it is slightly shifted for the
rarefaction. This shift is due to the prediction for the average, which is based entirely on the state
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(a) In the rarefaction (x = 0.35) (b) In the plateau (x = 0.6) (c) In the shock neighbourhood (x =
0.85)

Figure 12: Distribution of ρ(x, T ;a) for three different values of x at final time T = 0.2

(a) In the rarefaction (x = 0.35) (b) In the plateau (x = 0.6) (c) In the shock neighbourhood (x =
0.85)

Figure 13: Distribution of u(x, T ;a) for three different values of x at final time T = 0.2

and caused by the fact that it is only a first order approximation. However, one can remark that the
variance is correctly estimated using the sensitivities. In the following, we use the expression (29),
expecting however a loss of precision in the neighbourhood of the shock.

In Figure 15 we show the results of the Monte Carlo approach: the average and the average plus
and minus twice the standard deviation (i.e. κ = 2) are plotted in red, five samples are plotted
in black. These results are obtained with N = 1000 samples, on a mesh with ∆x = 10−3 using a
Roe first order diffusive scheme. As one can see, the average process smudges the shock and the
standard deviation is bigger in that zone. In fact, this area of large variance around the shock
location is related to the delta Dirac function in sensitivity solution, but this peak is ”smooth” due
to the fact that Monte-Carlo approach accounts for flow non-linearities and is not limited to the
first-order estimate of the perturbation. In Figures 16-17 we show the results of the sensitivity-based
approach, with ∆x = 10−3 and the diffusive first order scheme, when the sensitivity is computed
without the correction term (13): the spikes in the neighbourhood of the shock are very different

(a) In the rarefaction (x = 0.35) (b) In the plateau (x = 0.6) (c) In the shock neighbourhood (x =
0.85)

Figure 14: Distribution of p(x, T ;a) for three different values of x at final time T = 0.2
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Figure 15: Monte Carlo approach. Average and the average plus and minus twice the standard deviation
in red. Five samples in black dashed lines.

with respect to the ones we get with the Monte Carlo approach. As explained above, these spikes are
due to the default of high-order terms in the Taylor expansion. On one hand, these peaks lead to non-
physical values for the solution (in particular, the confidence intervals contains negative values for the
pressure and for the density); on the other hand, they do not enlarge sufficiently the zone to contain
the majority of the samples: one can observe that four out of five samples fall out of the predicted
interval in the neighbourhood of the shock. Nevertheless, we observe that the non-linear effects are
located in a small region around the shock and elsewhere confidence interval is well estimated by the
sensitivity-based method. The results obtained with the corrected sensitivities are shown in Figure 18:
the confidence interval obtained correspond to the ones obtained with the Monte Carlo approach,
apart for the shock zone. Of course, the sensitivity-based approach does not capture the uncertainty
in the neighborhood of the shock, because it neglects the dependence of the speed of the shock on the
parameters. This is why most of the samples fall out of the zone predicted with the sensitivity-based
approach, and it is the case with and without correction. However, the correction avoids non-physical
values in the confidence interval. Although the sensitivity-based approach is not able to account for
non-linear effects, contrary to the Monte-Carlo method, it is far less expensive: the Monte Carlo
approach requires 1000 solutions of the state, whilst the sensitivity-based approach only one solution
of the state and as many solution of the sensitivity as the number of uncertain parameters, in this
case 6. Therefore, this approach can still be interesting for computationally-demanding problems, for
which the use of the Monte-Carlo method cannot be envisaged.

Finally, in Figure 19 we show the results obtained with the anti-diffusive scheme: the difference
with respect to the diffusive scheme is not significant. This is a good news for possible future
developments in 2D: the anti-diffusive scheme is very difficult to adapt in higher dimensional spaces;
in fact the Glimm method has been proven not to work in a two-dimensional space. With these
results, we underline how the numerical diffusion plays an important role in the convergence of the
scheme, but it is not so significant for the final application.

The numerical results of the SA method applied to an uncertainty propagation problem show the
potential and the limits of the method: it is really affordable from a computational point of view,
with the trade off of being less precise than, for instance, a Monte Carlo method in the discontinuous
zones. If one accepts this loss of precision, the proposed approach remains accurate in the regular
zone and is highly competitive thanks to its very low computational cost.

6 Conclusion

In this work, we extended to the complete Euler system the method proposed in [5] for the p−system.
The definition of the source term does not differ significantly and the same shock detectors can be used
in this case. We remark that a contact discontinuity detector is not necessary, since the middle wave
is always a contact discontinuity. However, in this more complex case, the form of the proposed source
term precludes the application of some well-known and widely used numerical schemes such as the
HLL scheme, and all the approximate Riemann solvers with only one middle state. The numerical
results show that the numerical diffusion in the shocks plays an important role and corrupts the
convergence to the correct solution even for the complete system. However, we remark that the
expected convergence rate can be achieved without removing the numerical diffusion in the contact
discontinuity, which simplifies the definition of the staggered mesh. Currently, we are extending this
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Figure 16: SA approach without correction. Average and the average plus and minus twice the standard
deviation in red. Five samples in black dashed lines
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Figure 17: SA approach without correction. Average and the average plus and minus twice the standard
deviation in red. Five samples in black dashed lines - zoom.
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Figure 18: SA approach with correction. Average and the average plus and minus twice the standard
deviation in red. Five samples in black dashed lines
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Figure 19: SA approach with correction, anti-diffusive scheme. Average and the average plus and minus
twice the standard deviation in red. Five samples in black dashed lines
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to the quasi 1D Euler system and we are dealing with some applications, such as optimization and
uncertainty quantification: the results obtained in those frameworks show the importance of the
correction term.
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A Solution of the Riemann problem

In this appendix, we write the exact solution for the system (19) in a specific case (cf. [2]), which
was used as a test case to check the convergence of the numerical schemes proposed. We consider a
Riemann problem, i.e.:

V0(x) =

{
VL x < xc,

VR x > xc.

The general solution for this kind of problem is quite complicated, especially for the sensitivity (the
last three components of V). First, we study the state (the first three components of V): the pair
(λ2, r2) is linearly degenerated, i.e. ∇λ2 · r2 = 0, therefore the middle wave is always a contact
discontinuity; concerning the 1−wave and the 3−wave, they are genuinely nonlinear therefore they
can either be shocks or rarefaction waves. In Figure 20 we show the structure of the state in the
case rarefaction-contact-shock. Concerning the sensitivity, it has the same structure as the state (cf.
Figure 21 in the case rarefaction-contact-shock): the middle wave is always a contact wave, and the
1− and 2−wave are of the same type as for the state. The only difference is that the sensitivity
presents discontinuities in the two extrema of the rarefaction fan (and this is why in Figure 21 the
external lines of the rarefaction fan are thicker).

In the following, we illustrate this analysis of the wave structure by giving the detailed solution
for the state and for the sensitivity in a specific case. The initial data for the state on the physical
variables is the following:

ρL = 1, uL = 0, pL = 1, ρR = 0.125, uR = 0, pR = 0.1.
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Ûa

Figure 21: Structure of the solution for the Riemann problem for the sensitivity.

We consider as parameter of interest a = pL, therefore the initial data for the sensitivity is:

ρa,L = ρa,R = ua,L = ua,R = pa,R = 0, pa,L = 1.

This choice of initial data leads to the structure in Figures 20-21, for the state as well as for the
sensitivity: the 1−wave is a rarefaction and the 3−wave is a shock. For the notation, please refer to
Figure 20 for the state and Figure 21 for the sensitivity. Let us now give the exact formulas for the
state and for the sensitivity.

State solution: the exact solution for the physical variables is given in [2]. Every variable is given
as a function of the pressure in the right-star zone p∗R, which is computed numerically from the
following implicit relation:

pL = p∗R

1−
(γ − 1) cR

cL
(
p∗R
pR
− 1)√

2γ
(

2γ + (γ + 1)(
p∗
R
pR
− 1)

)

− 2γ
γ−1

, (30)

where c` =

√
γp`
ρ`

, with ` = L,R. In the star regions, we have:

p∗L = p∗R = p∗,

u∗L = u∗R = u∗ = cR

(
p∗

pR
− 1

)√
2

γ(γ + 1) p
∗

pR
+ γ(γ − 1)

,

because the velocity u and the pressure p are Riemann invariants across the 2−wave; as for the
density ρ, we have:

ρ∗R = ρR
p∗

pR

(
1 + γ−1

γ+1
pR
p∗

1 + γ−1
γ+1

p∗

pR

)
,

ρ∗L = ρL

(
p∗

pL

) 1
γ

.

In the rarefaction wave, we have:

û(x, t) =
2(u∗ − uL)

(γ + 1)u∗

(x− xc
t

)
+ 2

cLu
∗ − uL

(
cL − γ+1

2
u∗
)

(γ + 1)u∗
,
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ρ̂(x, t) = ρL

(
1− (γ − 1)

û(x, t)

2cL

) 2
γ−1

,

p̂(x, t) = pL

(
1− (γ − 1)

û(x, t)

2cL

) 2γ
γ−1

.

Finally, the solution writes:

U(x, t) =



UL x− xc < −cLt,
Û −cLt < x− xc <

(
γ+1

2
u∗ − cL

)
t,

U∗L
(
γ+1

2
u∗ − cL

)
t < x− xc < u∗t,

U∗R u∗t < x− xc < cR
√

γ−1
2γ

+ γ+1
2γ

p∗

pR
t,

UR x− xc > cR
√

γ−1
2γ

+ γ+1
2γ

p∗

pR
t.

(31)

Sensitivity solution: here we are solving the second part of system 19, that is the one with the
source term. The source term was designed in such a way that the solution for the sensitivity is the
derivative of the state solution in the regular zones and there are no Dirac delta function where the
state is discontinuous. Therefore, by differentiating (30) with respect to a, one obtains the following
explicit formula for p∗a,R:

p∗a,R = p∗a,L = p∗a =
1 + Θ

1−3γ
γ−1 Ξp∗

Θ
− 2γ
γ−1 + Θ

1−3γ
γ−1 (Λ−Ψ)p∗

,

where:

Θ = 1−
(γ − 1)cR

(
p∗

pR
− 1
)

cL

√
4γ2 + 2γ(γ − 1)

(
p∗

pR
− 1
) ,

Ξ =
cR
(
p∗

pR
− 1
)
ca,R
√

2γ

c2L

√
2γ + (γ + 1)

(
p∗

pR
− 1
) ,

Λ =

√
2γ cR

cLpR

√
2γ + (γ + 1)

(
p∗

pR
− 1
) ,

Ψ =
γ(γ + 1)cR

(
p∗

pR
− 1
)

cLpR
√

2γ
(

2γ + (γ + 1)
(
p∗

pR
− 1
)) 3

2

.

In the star regions, by differentiating the corresponding state, one finds:

u∗a =
2ca,L
γ − 1

(
1−

(
p∗

pL

) γ−1
2γ

)
− cL

γ

(
p∗

pL

)−γ−1
2γ

(
pLp

∗
a − p∗

p2
L

)
,

ρ∗a,R =
ρRp

∗
a

pR

(
1 + γ−1

γ+1
pR
p∗

)
(

1 + γ−1
γ+1

p∗

pR

) + ρR
p∗

pR

γ − 1

γ + 1

− pRp∗ap∗2

(
1 + γ−1

γ+1
p∗

pR

)
− p∗a

pR

(
1 + γ−1

γ+1
pR
p∗

)
(1 + γ−1

γ+1
p∗

pR
)2

 ,

ρ∗a,L =
ρL
γ

pLp
∗
a − p∗

p2
L

(
p∗

pL

) 1−γ
γ

.

Finally, in the rarefaction:

ûa(x, t) =
2uLu

∗

(γ + 1)u∗2
x− xc
t

+ 2
ca,Lu

∗2 − ca,LuLu∗ + cLuLu
∗
a

(γ + 1)u∗2
,

ρ̂a(x, t) = −ρL
(
ûa(x, t)cL − û(x, t)ca,L

c2L

)(
1− (γ − 1)û(x, t)

2cL

) 3−γ
γ−1

,
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p̂a(x, t) =

(
1− (γ − 1)û(x, t)

2cL

) 2γ
γ−1

− pLγ
(
ûa(x, t)cL − û(x, t)ca,L

c2L

)(
1− (γ − 1)û(x, t)

2cL

) γ+1
γ−1

.

The sensitivity has the same structure as the state, therefore:

Ua(x, t) =



Ua,L x− xc < −cLt,
Ûa

(
x−xc
t

)
−cLt < x− xc <

(
γ+1

2
u∗ − cL

)
t,

U∗a,L
(
γ+1

2
u∗ − cL

)
t < x− xc < u∗t,

U∗a,R u∗t < x− xc < cR
√

γ−1
2γ

+ γ+1
2γ

p∗

pR
t,

Ua,R x− xc > cR
√

γ−1
2γ

+ γ+1
2γ

p∗

pR
t.

(32)

We remark that if one writes the Rankine-Hugoniot conditions across the shock one finds:

−cR
√
γ − 1

2γ
+
γ + 1

2γ

p∗

pR
(Ua,R −U∗a,R) + Fa(UR,Ua,R)− Fa(U∗R,U

∗
a,R) = S.
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