K. Bettenbrock, S. Fischer, A. Kremling, K. Jahreis, T. Sauter et al., A quantitative approach to catabolite repression in Escherichia coli, J Biol Chem, vol.281, issue.5, pp.2578-84, 2006.

L. Kuepfer, M. Peter, U. Sauer, and J. Stelling, Ensemble modeling for analysis of cell signaling dynamics, Nat Biotechnol, vol.25, issue.9, pp.1001-1007, 2007.

T. J. Snowden, P. H. Van-der-graaf, and M. J. Tindall, Methods of model reduction for large-scale biological systems: a survey of current methods and trends, Bull Math Biol, vol.79, issue.7, pp.1449-86, 2017.

M. Apri, M. De-gee, and J. Molenaar, Complexity reduction preserving dynamical behavior of biochemical networks, J Theor Biol, vol.304, pp.16-26, 2012.

L. Petzold and W. Zhu, Model reduction for chemical kinetics: An optimization approach, AIChE J, vol.45, issue.4, pp.869-86, 1999.

M. Sunnåker, G. Cedersund, and M. Jirstrand, A method for zooming of nonlinear models of biochemical systems, BMC Syst Biol, vol.5, issue.1, p.140, 2011.

A. N. Gorban and I. V. Karlin, Method of invariant manifold for chemical kinetics, Chem Eng Sci, vol.58, issue.21, pp.4751-68, 2003.

J. Anderson, Y. Chang, and A. Papachristodoulou, Model decomposition and reduction tools for large-scale networks in systems biology, Automatica, vol.47, issue.6, pp.1165-74, 2011.

K. M. Hangos, A. Gábor, and G. Szederkényi, Model reduction in bio-chemical reaction networks with Michaelis-Menten kinetics, Control Conference (ECC), pp.4478-4483, 2013.

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev, vol.31, issue.3, pp.446-77, 1989.

H. De-jong, J. Gouzé, C. Hernandez, M. Page, T. Sari et al., Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bull Math Biol, vol.66, issue.2, pp.301-341, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00173849

V. Baldazzi, D. Ropers, Y. Markowicz, D. Kahn, J. Geiselmann et al., The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes, PLoS Comput Biol, vol.6, issue.6, p.1000812, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00793021

B. Bhattacharjee, D. A. Schwer, P. I. Barton, and W. H. Green, Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms, Combust Flame, vol.135, issue.3, pp.191-208, 2003.

S. Casagranda, D. Ropers, and J. Gouzé, Model reduction and process analysis of biological models, 2015 23rd Mediterranean Conference on Control and Automation (MED), pp.1132-1141, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01239356

J. Leloup and A. Goldbeter, A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins, J Biol Rhythm, vol.13, issue.1, pp.70-87, 1998.

C. Kwang-hyun, S. Sung-young, K. Hyun-woo, O. Wolkenhauer, B. Mcferran et al., Mathematical modeling of the influence of RKIP on the ERK signaling pathway, Computational Methods in Systems Biology, pp.127-168, 2003.

J. Leloup and A. Goldbeter, Modeling the mammalian circadian clock: sensitivity analysis and multiplicity of oscillatory mechanisms, J Theor Biol, vol.230, issue.4, pp.541-62, 2004.

H. K. Khalil, Nonlinear Systems, Second edn, 1996.

J. Leloup and A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock, Proc Natl Acad Sci, vol.100, issue.12, pp.7051-7057, 2003.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman et al., An efficient k-means clustering algorithm: Analysis and implementation, IEEE Trans Pattern Anal Mach Intell, vol.24, issue.7, pp.881-92, 2002.

S. Casagranda and J. Gouzé, Principal Process Analysis and reduction of biological models with order of magnitude. IFAC-PapersOnLine, vol.50, pp.12661-12667, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01529448

A. Kobilinsky, H. Monod, and R. A. Bailey, Automatic generation of generalised regular factorial designs, Comput Stat Data Anal, vol.113, pp.311-340, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608689

M. Lamboni, H. Monod, and D. Makowski, Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliab Eng Syst Saf, vol.96, issue.4, pp.450-459, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00999840

G. E. Box and J. S. Hunter, The 2 k-p fractional factorial designs, Technometrics, vol.3, issue.3, pp.311-51, 1961.

B. Zheng, U. Albrecht, K. Kaasik, M. Sage, W. Lu et al., Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock, Cell, vol.105, issue.5, pp.683-94, 2001.

G. T. Van-der-horst, M. Muijtjens, K. Kobayashi, R. Takano, S. Kanno et al., Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms, Nature, vol.398, issue.6728, pp.627-630, 1999.

J. J. Tyson, C. I. Hong, C. D. Thron, and B. Novak, A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM, Biophys J, vol.77, issue.5, pp.2411-2418, 1999.

H. Pagel, C. Poll, J. Ingwersen, E. Kandeler, and T. Streck, Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to process rates, Soil Biol Biochem, vol.103, pp.349-64, 2016.

C. Robles-rodriguez, C. Bideaux, S. Guillouet, N. Gorret, G. Roux et al., Multi-objective particle swarm optimization (MOPSO) of lipid accumulation in fed-batch cultures, 2016 24th Mediterranean Conference on Control and Automation (MED), pp.979-984, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602874