L. A. Gatys, A. S. Ecker, and M. Bethge, A neural algorithm of artistic style. arXiv preprint arXiv, pp.1508-06576, 2015.

J. Johnson, A. Alahi, and L. Fei-fei, Perceptual Losses for Real-Time Style Transfer and Super-Resolution, eds) Computer Vision ? ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, 2016.
DOI : 10.1007/978-3-642-27413-8_47

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, p.ICLR, 2015.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, vol.1010, issue.1, pp.211-252, 2015.
DOI : 10.1007/978-3-642-15555-0_11

I. and P. Labs, Prisma: Turn memories into art using artificial intelligence, 2016.

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.CVPR, 2015.
DOI : 10.1109/CVPR.2015.7298965

H. Noh, S. Hong, and B. Han, Learning Deconvolution Network for Semantic Segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), p.ICCV, 2015.
DOI : 10.1109/ICCV.2015.178

S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, p.ICML, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.CVPR, 2016.
DOI : 10.1109/CVPR.2016.90

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona et al., Microsoft COCO: Common Objects in Context, Part V. LNCS, pp.740-755, 2014.
DOI : 10.1007/978-3-319-10602-1_48

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., TensorFlow: A system for large-scale machine learnin. arXiv preprint arXiv:1605, p.8695, 2016.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran et al., efficient primitives for deep learning. arXiv preprint, 2014.