
HAL Id: hal-01820923
https://inria.hal.science/hal-01820923

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Power Control in D2D Network Based on Game Theory
Kai Zhang, Xuan Geng

To cite this version:
Kai Zhang, Xuan Geng. Power Control in D2D Network Based on Game Theory. 2nd International
Conference on Intelligence Science (ICIS), Oct 2017, Shanghai, China. pp.104-112, �10.1007/978-3-
319-68121-4_11�. �hal-01820923�

https://inria.hal.science/hal-01820923
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Power control in D2D network based on Game Theory 

 Kai Zhang, Xuan Geng 

College of Information Engineering, Shanghai Maritime University, Shanghai, China 

zhangkai8816@foxmail.com,xuangeng@shmtu.edu.cn 

Abstract. This paper considers power control problem based on Nash equilib-

rium (NE) to eliminate interference in multi-cell device-to-device (D2D) net-

work. The power control problem is modeled as a non-cooperative game model, 

and a user residual energy factor is introduced in the formulation. Based on the 

proof of the existence and uniqueness of Nash equilibrium, a distributed iterative 

game algorithm is proposed to realize power control. Simulation results show 

that the proposed algorithm can converge to Nash equilibrium quickly, and obtain 

a better equilibrium income by adjusting the residual energy factor.  
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1 Introduction 

With the requirement for high speed and efficiency of data transmission, the limited 

spectrum resource brings great challenges for mobile network communication. D2D 

communication is a new wireless technology, where two devices can communicate with 

each other without exchanging information from base station, so that it cannot only 

reduce the burden of base station, but also improve communication quality of cellular 

users [1]. However, the D2D users will be suffered from interference of other users in 

cellular system. Therefore, the interference elimination has been investigated in recent 

years [2].  

In[3], the authors studied that the D2D users and the cellular users use the same 

channel resources by multiplexed mode. Although it can improve spectrum utilization, 

it will introduce a new kind of interference. The authors in [4] investigated a power 

control method for single cellular system containing one cellular link and one D2D link. 

The algorithm can reduce the interference significantly between D2D users and cellular 

users. In [5], the authors studied the interference elimination problem of multi-cell D2D 

network, where the cellular users are communicated by base station schedule and the 

D2D link communication is guaranteed by power control.   

The previous work mainly focused on the centralized power control method for 

D2D network, while the distributed implementation is less concerned. Therefore, we 

studied distributed power control method in this paper by use of game theory. We first 

establish a static game model in hybrid multi-cell D2D network, and then prove the 

existence and uniqueness of the Nash equilibrium. Finally, the distributed power con-

trol method is iteratively implemented to obtain the optimal state of Nash equilibrium. 

Simulation results show that the game model designed in this paper can converge 
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quickly to Nash equilibrium, and the system can get better balance by adjusting the 

residual energy factor. 

2 System Model 

The system model of D2D network is shown in Figure 1. We consider a multi-cell 

system containing D2D links, and the adjacent cells use the same frequency band for 

multiplexing communication. Assume there are N  cellular and D2D links in the sys-

tem to use the same frequency resource. To eliminate the co-channel interference 

among the different cellular links and the interference between the cellular links and 

the D2D links, we propose a power control method based on game theory with pricing 

mechanism.  

 
 

 

 

 

 

 

 

 

 

Fig. 1. D2D network system model 

According to game theory, there are three elements should be considered, which 

include the player, the strategy and the utility function. We define the power control 

model as ],,[ UPNG   in multi-cell D2D network, and introduce the three ele-

ments: 

 

(1) Player: Assume each cellular link and D2D link are the participants making deci-

sion of the game. We denote },...,2,1{ NN  to be the participant set and each ele-

ment represents one communication link. 

(2) Strategy: Assume one communication link is denoted by j N , where the trans-

mit power is jj Pp  . Here jP
 
is the available transmit power region of the link j , 

i.e. the strategy space of the game player. All the strategies constitute

 1 2, , , NP p p p , and all the strategy space combinations can be expressed by 

i N iP P  . Besides, ,j i N i j iP P  

  

represents all the left users’ strategy space 
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combination except the link j . Let  max0,jP p
 
and maxp

 
is the maximum avail-

able transmit power for the user. 

(3) Utility function: Define 

  2
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, where ju is the utility func-

tion of user j  and it represents the payoff obtained by the game players after making 

decision. jh is the channel gain of the link j  and 
2 is the variance of the additive 

white Gaussian noise. Unlike [6], we introduce a user residual energy factor  in the 

utility function, which is defined as

 

max /j jE E    (1) 

 
where jE is the residual energy transmitted by link j , and its maximum valve is

max

jE . The energy factor  describes a price law. On one hand, when the supply ex-

ceeds the demand, the payment for the price of energy consumption is low and the user 

can consume more energy to obtain better performance. On the other hand, when the 

demand exceeds supply, the energy consumption should pay more prices. Therefore, 

adjusting  can make the performance and energy consumption in a reasonable trade-

off state. Note that   is regarded as a control factor in the simulation.  

Here we formulate the problem to establish a non-cooperative power control game 

model with pricing mechanism, which is 

 max , ,
j j

j j j
p P

u p p j N


  (2)
 

In this paper, we use Nash equilibrium to solve the problem. We define the policy 

combination  * * * *

1 2, ,..., Np p p p p 
 as a Nash equilibrium, and establish the be-

low expression 

NjPpppuppu jjjjjjjj   ,),,(),( ***

 
 (3)

 

If the game players adopt the strategy combination 
*p , they cannot leave and 

change the strategy combination, so that the Nash equilibrium will be the optimal solu-

tion.  
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3 Non-cooperative Power Control Game Analysis     

According to the model in eq.(2) , we prove the existence and uniqueness of Nash equi-

librium in this section. After that, we use a distributed iterative power algorithm to solve 

the Nash equilibrium point. 

3.1 Existence 

Theorem 1: Nash equilibrium exists in the power control game model 

],,[ UPNG  . 

    Proof: Power strategy space is a non-empty, closed, and bounded convex set in 

Euclidean space. The utility function ju is continuous for the strategy combination p , 

so that we obtain 

2 2 2

22
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j j j j j

j j
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h
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  

 


 
 

 

(4) 

Therefore, ( , )j j ju p p  is quasi-concave for jp  of the j th player[7]. Accord-

ing to the game existence theorem in [8], the game G  has Nash equilibrium. 

3.2 Uniqueness 

Theorem 2: The iterative game algorithm can converge to the unique equilibrium 

point. 

    Proof: If we want to prove there is Nash equilibrium point in the game, the itera-

tive function should meet the positive   0r p  , monotonic    'r p r p , and ex-

pandability    
1

r Tp r p
T

 , where  r p is the optimal response strategy set. 

Given the strategies jp , the optimal response strategy set of game players is 

   * *| arg max ,
j

j j j j j j j
p

r p p p u p p 

 
  
   

 
 

(5) 

All the players  j jr p  form the vector as 

          1 1 2 2, , , , ,j j N Nr p r p r p r p r p   
 
 

(6) 
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According to the concave of utility function, we have 

 
~

maxarg max , min ,
j

j j j j j
p

u u p p p p

 
  

   . 

Let
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(7) 

    and we obtain 

 

2
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~ ~ 1, 1,

2
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k k k k j j
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j j j

j j
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   

 

 

(Negative solution)
 
 

 

(8) 

    Therefore, the optimal response strategy is 

 

 
~

* *

maxmin ,j j j jp p p p p

 
   

 
 

 

(9) 

    The optimal response strategy vector is 
 

        * * *

1 1 2 2, , , N Nr p p p p p p p    (10) 

 

(1) Positive: If 0p  , then   0r p  . If all the elements of a vector are not less 

than the corresponding elements of another vector, the former one will be greater 

than or equal to the latter vector. 

(2) Monotonicity: If 
'p p , then    'r p r p . 

    Proof: If 
'p p , then  

 

2 2 '

1, 1,

N N

k k k k

k k j k k j

h p h p 
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   Let 
2

1,

N

k k

k k j

x h p
 

   , we have 
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2 2
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    and obtain 

2

( ) 1 1
0

2 2 2j j j j j j

df x x

dx h h x h  
   


 

 

(13) 

    The function is a monotonically decreasing function, i.e.    'r p r p , so that 

the optimal response strategy vector satisfies the monotonicity. 

(3) Extensibility: If 1T  , then    
1

r Tp r p
T

 . 

    Proof: We have 
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so that 
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(16) 

and we obtain 
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    
1

r Tp r p
T

  
(17) 

It means that the optimal response strategy vector can be extended. 

According to the Ref.[9], we can conclude that the non-cooperative power con-

trol game has a unique Nash equilibrium point, which can be simply expressed by 

        * * *

1 1 2 2, , , N Np p p p p p p    (18) 

3.3 Distributed iterative game algorithm 

Based on the proofs in section 3.2, we present a distributed iterative algorithm to 

solve the Nash equilibrium. The realization is summarized below. 

Step 1:  Define the number of iteration M , and the stop criteria U . 

        Set 0m  . 

Set the initial value of the strategy combination
(0) 0p  ; 

Step 2:  Set 1m m  . 

        Update the strategy via Eq.(9) to obtain new strategy 
( )mp by use of 

( 1)mp 
. 

Step 3:  Repeat step 2 until
( ) ( 1)m mp p U  , and the algorithm ends. The out-

put of Nash equilibrium point strategy is 
( )mp .  

Note that the players only know their own channel gain jh  and the corresponding 

energy factor j  when the Nash equilibrium point is calculated, so that the algorithm 

is implemented by distributed way. 

4 Simulation Results 

In this section, we perform the proposed non-cooperative power control game algo-

rithm in D2D network by matlab simulation. The wireless system in simulation com-

poses four cells 
1 4~c c , and each cell has single cellular link and single D2D link, so 

that 8N . The game player set is expressed as  8,21 ，，N . Assume all the 

links use the same frequency band. The link gains 
jh of the four cellular links are as-

sumed to be 0.5, 0.7, 0.9, 1.1, and the other four D2D links gains are 1.2, 1.6, 2.0, 2. 

The variance of additive white Gaussian noise is unit. The maximum transmit power 

maxp  of the D2D link and the cellular link is also unit. The compared algorithm comes 

from Ref [9]. 



8 

Figure 2 shows the valves of utility function varied with the iteration number. The 

control factor is set to be 2. Note the control factor in Ref[9] represents power coeffi-

cient. From the simulation, it can be seen that our algorithm converges to the stable 

state within six times, while the compared algorithm in Ref [9] needs eight times. 

Therefore, our method can converge more quickly than the compared one. Besides, we 

find that the valve of utility function of our method is bigger than the compared method, 

which means our method is more stable. 

 

Fig. 2. Utility function value comparison for two algorithms 

 

Figure 3 gives the bar chart of the iteration number varied with the control factor. 

It shows that our algorithm has smaller iteration number when the control factor is big-

ger than 1, which means the algorithm is more efficient.  
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Fig. 3. Comparison of iteration number for two algorithms 

   

 Figure 4 gives the transmit power results for all of users in Nash equilibrium 

state. It observed that all of transmit power of users tend to be stable. Hence the pro-

posed price function can make the system achieve the equilibrium stable state.   

 

Fig. 4. Transmit power of each user in Nash equilibrium  
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From the simulations, we conclude that the power control algorithm based on 

pricing mechanism can effectively improve the performance of the system if pricing 

factor is adjusted reasonably.  

5 Conclusion 

In this paper, we investigate the power control problem in D2D network. A non-coop-

erative game model based on pricing mechanism is established to eliminate the inter-

ference in complex environment. We design a price function and prove its existence 

and uniqueness, and then propose a distributed iterative algorithm which can converge 

to Nash Equilibrium point. From the simulation, it can be observed that our algorithm 

improve the system performance compared with the conventional method.  
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