E. Barron, J. Lara, M. White, and J. C. Mathers, Blood-Borne Biomarkers of Mortality Risk: Systematic Review of Cohort Studies, PLOS ONE, vol.339, issue.10, p.127550, 2015.
DOI : 10.1371/journal.pone.0127550.s003

P. Besnard and A. Hunter, A logic-based theory of deductive arguments??????This is an extended version of a paper entitled ???Towards a logic-based theory of argumentation??? published in the Proceedings of the National Conference on Artificial Intelligence (AAAI'2000), Austin, TX, MIT Press, Cambridge, MA, 2000., Artificial Intelligence, vol.128, issue.1-2, pp.203-235, 2001.
DOI : 10.1016/S0004-3702(01)00071-6

D. Bryant and P. Krause, A review of current defeasible reasoning implementations, The Knowledge Engineering Review, vol.170, issue.03, pp.227-260, 2008.
DOI : 10.1007/s10458-005-1354-8

M. G. Core, H. C. Lane, M. Van-lent, D. Gomboc, S. Solomon et al., Building explainable artificial intelligence systems, In: AAAI. pp, pp.1766-1773, 2006.
DOI : 10.21236/ADA459166

R. Craven, F. Toni, C. Cadar, A. Hadad, and M. Williams, Efficient argumentation for medical decision-making, p.KR, 2012.

D. Ruijter, W. Westendorp, R. G. Assendelft, W. J. Den-elzen, W. P. De-craen et al., Use of Framingham risk score and new biomarkers to predict cardiovascular mortality in older people: population based observational cohort study, BMJ, vol.338, issue.jan08 2, p.3083, 2009.
DOI : 10.1136/bmj.a3083

J. F. Dipnall, J. A. Pasco, M. Berk, L. J. Williams, S. Dodd et al., Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression, PLOS ONE, vol.arXiv, issue.6, p.148195, 2016.
DOI : 10.1371/journal.pone.0148195.s001

P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artificial Intelligence, vol.77, issue.2, pp.321-358, 1995.
DOI : 10.1016/0004-3702(94)00041-X

D. García and G. Simari, Strong and weak forms of abstract argument defense. Computational Models of Argument: Proceedings of COMMA, p.216, 2008.

D. Glasspool, J. Fox, A. Oettinger, and J. Smith-spark, Argumentation in decision support for medical care planning for patients and clinicians, AAAI Spring Symposium: Argumentation for Consumers of Healthcare, pp.58-63, 2006.

A. Hunter and M. Williams, Argumentation for Aggregating Clinical Evidence, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, pp.361-368, 2010.
DOI : 10.1109/ICTAI.2010.59

S. J. Lee, K. Lindquist, M. R. Segal, and K. E. Covinsky, Development and Validation of a Prognostic Index for 4-Year Mortality in Older Adults, JAMA, vol.295, issue.7, pp.801-808, 2006.
DOI : 10.1001/jama.295.7.801

D. Lloyd-jones, R. Adams, M. Carnethon, G. De-simone, T. B. Ferguson et al., Heart disease and stroke statistics2009 update: a report from the american heart association statistics committee and stroke statistics subcommittee, pp.21-181, 2009.

L. Longo, Formalising Human Mental Workload as Non-monotonic Concept for Adaptive and Personalised Web-Design, International Conference on User Modeling, Adaptation, and Personalization, pp.369-373, 2012.
DOI : 10.1007/978-3-642-31454-4_38

L. Longo, A defeasible reasoning framework for human mental workload representation and assessment, Behaviour & Information Technology, vol.35, issue.2, pp.758-786, 2015.
DOI : 10.1016/S0019-9958(65)90241-X

L. Longo, Argumentation for Knowledge Representation, Conflict Resolution, Defeasible Inference and Its Integration with Machine Learning, Machine Learning for Health Informatics, pp.183-208, 2016.
DOI : 10.1007/978-3-319-28460-6_10

L. Longo and P. Dondio, Defeasible Reasoning and Argument-Based Systems in Medical Fields: An Informal Overview, 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, pp.376-381, 2014.
DOI : 10.1109/CBMS.2014.126

L. Longo and L. Hederman, Argumentation theory for decision support in healthcare: a comparison with machine learning, International Conference on Brain and Health Informatics, pp.168-180, 2013.

L. Longo, B. Kane, and L. Hederman, Argumentation theory in health care, 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), pp.1-6, 2012.
DOI : 10.1109/CBMS.2012.6266323

P. A. Matt, M. Morgem, and F. Toni, Combining statistics and arguments to compute trust, 9th International Conference on Autonomous Agents and Multiagent Systems, pp.209-216, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00731959

J. L. Pollock, Defeasible Reasoning, Cognitive Science, vol.13, issue.4, pp.481-518, 1987.
DOI : 10.1016/0004-3702(80)90014-4

H. Prakken, An abstract framework for argumentation with structured arguments, Argument & Computation, vol.4, issue.2, pp.93-124, 2010.
DOI : 10.1017/CBO9780511802034

K. P. Pritzker and L. B. Pritzker, Bioinformatics advances for clinical biomarker development, Expert Opinion on Medical Diagnostics, vol.169, issue.8, pp.39-48, 2012.
DOI : 10.3109/00365513.2010.493420

L. Rizzo, P. Dondio, S. J. Delany, and L. Longo, Modeling Mental Workload Via Rule-Based Expert System: A Comparison with NASA-TLX and Workload Profile, pp.215-229, 2016.
DOI : 10.1007/978-3-319-12877-1

URL : https://hal.archives-ouvertes.fr/hal-01557636

L. Rizzo and L. Longo, Representing and inferring mental workload via defeasible reasoning: a comparison with the nasa task load index and the workload profile, 1st Workshop on Advances In Argumentation In Artificial Intelligence, pp.126-140, 2017.

T. Slater, C. Bouton, and E. S. Huang, Beyond data integration, Drug Discovery Today, vol.13, issue.13-14, pp.584-589, 2008.
DOI : 10.1016/j.drudis.2008.01.008

K. Strimbu and J. A. Tavel, What are biomarkers?, Current Opinion in HIV and AIDS, vol.5, issue.6, p.463, 2010.
DOI : 10.1097/COH.0b013e32833ed177

A. L. Swan, A. Mobasheri, D. Allaway, S. Liddell, and J. Bacardit, Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology, OMICS: A Journal of Integrative Biology, vol.17, issue.12, pp.595-610, 2013.
DOI : 10.1089/omi.2013.0017