M. Kirschner and J. Gerhart, The Plausibility of Life Resolving Darwin's Dilemma, 2005.

M. Parter, N. Kashtan, and U. Alon, Facilitated Variation: How Evolution Learns from Past Environments To Generalize to New Environments, PLoS Computational Biology, vol.9, issue.11
DOI : 10.1371/journal.pcbi.1000206.s001

URL : https://doi.org/10.1371/journal.pcbi.1000206

G. Hinton and S. Nowlan, How learning can guide evolution Adaptive individuals in evolving populations, pp.447-454, 1996.

M. Pellegrini, E. Marcotte, M. Thompson, D. Eisenberg, and T. Yeates, Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles, Proceedings of the National Academia of Sciences of the United States of America. 96, pp.4285-4288, 1999.
DOI : 10.1089/omi.1.1998.3.177

URL : http://www.pnas.org/content/96/8/4285.full.pdf

M. Suzuki, A framework for the DNA???protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules, Structure, vol.2, issue.4, pp.4-317, 1994.
DOI : 10.1016/S0969-2126(00)00033-2

D. Smith and . Bullmore, Small-World Brain Networks. The Neuroscientist, pp.512-535, 2007.

O. Sporns, D. Chialvo, M. Kaiser, and C. Hilgetag, Organization, development and function of complex brain networks, Trends in Cognitive Sciences, vol.8, issue.9, pp.418-425, 2004.
DOI : 10.1016/j.tics.2004.07.008

M. Leshno and Y. Spector, Neural network prediction analysis: The bankruptcy case, Neurocomputing, vol.10, issue.2, pp.125-147, 1996.
DOI : 10.1016/0925-2312(94)00060-3

W. Chen and Y. Du, Using neural networks and data mining techniques for the financial distress prediction model, Expert Systems with Applications, vol.36, issue.2, pp.4075-4086, 2009.
DOI : 10.1016/j.eswa.2008.03.020

Y. Kara, M. Acar, and Ö. Kaan, Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange, Expert Systems with Applications, vol.38, issue.5, pp.5311-5319, 2011.
DOI : 10.1016/j.eswa.2010.10.027

E. Guresen, G. Kayakutlu, and T. U. Daim, Using artificial neural network models in stock market index prediction, Expert Systems with Applications, vol.38, issue.8, pp.10389-10397, 2011.
DOI : 10.1016/j.eswa.2011.02.068

G. Zhang, M. Hu, B. Patuwo, and D. Indro, Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis, European Journal of Operational Research, vol.116, issue.1, pp.16-32, 1999.
DOI : 10.1016/S0377-2217(98)00051-4

URL : http://www.agsm.edu.au/bobm/teaching/SimSS/zhang.pdf

K. Kohara, T. Ishikawa, Y. Fukuhara, and Y. Nakamura, Stock Price Prediction Using Prior Knowledge and Neural Networks, International Journal of Intelligent Systems in Accounting, Finance & Management, vol.6, issue.1, pp.11-22, 1997.
DOI : 10.1002/(SICI)1099-1174(199703)6:1<11::AID-ISAF115>3.0.CO;2-3

A. Sheta, S. Ahmed, and H. Faris, A Comparison between Regression, Artificial Neural Networks and Support Vector Machines for Predicting Stock Market Index, International Journal of Advanced Research in Artificial Intelligence, vol.4, pp.55-63, 2015.

T. Khuat and M. Le, An Application of Artificial Neural Networks and Fuzzy Logic on the Stock Price Prediction Problem, JOIV : International Journal on Informatics Visualization, vol.1, issue.2, pp.40-49, 2017.
DOI : 10.30630/joiv.1.2.20

M. Naeini, H. Taremian, and H. Hashemi, Stock market value prediction using neural networks, International Conference on Computer Information Systems and Industrial Management Applications, pp.132-136, 2010.

G. Iuhasz, M. Tirea, and V. Negru, Neural Network Predictions of Stock Price Fluctuations, 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp.505-512, 2012.
DOI : 10.1109/SYNASC.2012.7

A. Nicholas, A. Zapranis, and G. Francis, Stock performance modeling using neural networks: A comparative study with regression models, Neural Networks, vol.7, issue.2, pp.375-388, 1994.
DOI : 10.1016/0893-6080(94)90030-2

A. Bahrammirzaee, A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems, Neural Computing and Applications, vol.179, issue.1, pp.1165-1195, 2010.
DOI : 10.1002/j.1099-1174.1994.tb00063.x

J. Coakley and C. Brown, Artificial neural networks in accounting and finance: modeling issues, International Journal of Intelligent Systems in Accounting, Finance & Management, vol.14, issue.2, pp.119-144, 2000.
DOI : 10.1016/S0169-2070(97)00044-7

URL : http://onlinelibrary.wiley.com/doi/10.1002/1099-1174(200006)9:2<119::AID-ISAF182>3.0.CO;2-Y/pdf

A. Fadlalla and C. Lin, An Analysis of the Applications of Neural Networks in Finance, Interfaces, vol.31, issue.4, pp.112-122, 2001.
DOI : 10.1287/inte.

W. Huang, K. Lai, Y. Nakamori, S. Wang, and L. Yu, NEURAL NETWORKS IN FINANCE AND ECONOMICS FORECASTING, International Journal of Information Technology & Decision Making, vol.26, issue.01, pp.113-140, 2007.
DOI : 10.1016/S0169-2070(97)00044-7

Y. Li, W. Jiang, L. Yang, and T. Wu, On neural networks and learning systems for business computing, Neurocomputing, vol.275, pp.1150-1159, 2018.
DOI : 10.1016/j.neucom.2017.09.054

V. Duarte, Macro, Finance, and Macro Finance: Solving Nonlinear Models in Continuous Time with Machine Learning, SSRN Electronic Journal, pp.1-27, 2017.
DOI : 10.2139/ssrn.3012602

J. Stefani, O. Caelen, D. Hattab, and G. Bontempi, Machine Learning for Multi-step Ahead Forecasting of Volatility Proxies. Workshop on Mining Data for financial applications, pp.1-12, 2017.

T. Fischer and C. Krauss, Deep learning with long short-term memory networks for financial market predictions. FAU discussion Papers in Economics, pp.1-32, 2017.
DOI : 10.1016/j.ejor.2017.11.054

URL : https://www.econstor.eu/bitstream/10419/157808/1/886576210.pdf

A. Hasan, O. Kal?ps?z, and S. Akyoku?, Predicting financial market in big data: Deep learning, 2017 International Conference on Computer Science and Engineering (UBMK), pp.510-515, 2017.
DOI : 10.1109/UBMK.2017.8093449

J. Arifovic, Genetic algorithms and inflationary economies, Journal of Monetary Economics, vol.36, issue.1, pp.219-243, 1995.
DOI : 10.1016/0304-3932(95)01203-7

K. Kim and I. Han, Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index, Expert Systems with Applications, vol.19, issue.2, pp.125-132, 2000.
DOI : 10.1016/S0957-4174(00)00027-0

W. Ticona, K. Figueiredo, and M. Vellasco, Hybrid model based on genetic algorithms and neural networks to forecast tax collection: Application using endogenous and exogenous variables International Conference on Electronics, Electrical Engineering and Computing, pp.1-4, 2017.
DOI : 10.1109/intercon.2017.8079660

D. Hossain and G. Capi, Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping. International Scholarly and Scientific Research & Innovation, pp.629-633, 2017.

S. Tirumala, Implementation of Evolutionary Algorithms for Deep Architectures, Artificial Intelligence and Cognition, pp.164-171, 2014.

O. David and I. , Genetic algorithms for evolving deep neural networks, Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion, GECCO Comp '14, pp.1451-1452, 2014.
DOI : 10.1145/2598394.2602287

URL : http://arxiv.org/pdf/1711.07655

E. Gelenbe, Random Neural Networks with Negative and Positive Signals and Product Form Solution, Neural Computation, vol.1, issue.4, pp.502-510, 1989.
DOI : 10.1162/neco.1989.1.4.502

E. Gelenbe, Learning in the Recurrent Random Neural Network, Neural Computation, vol.85, issue.1, pp.154-164, 1993.
DOI : 10.1162/neco.1989.1.2.161

E. Gelenbe, G-networks by triggered customer movement, Journal of Applied Probability, vol.30, issue.03, pp.742-748, 1993.
DOI : 10.1017/S0021900200042492

E. Gelenbe, A class of genetic algorithms with analytical solution, Robotics and Autonomous Systems, vol.22, issue.1, pp.59-64, 1997.
DOI : 10.1016/S0921-8890(97)00016-X

E. Gelenbe, Steady-state solution of probabilistic gene regulatory networks, Physical Review E, vol.7, issue.3, p.31903, 2007.
DOI : 10.1162/neco.1993.5.1.154

E. Gelenbe, P. Liu, and J. Laine, Genetic Algorithms for Route Discovery, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.36, issue.6, pp.1247-1254, 2006.
DOI : 10.1109/TSMCB.2006.873213

E. Gelenbe, Dealing with software viruses: A biological paradigm, Information Security Technical Report, vol.12, issue.4, pp.242-250, 2007.
DOI : 10.1016/j.istr.2007.11.002

E. Gelenbe, Network of interacting synthetic molecules in steady state, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.3, issue.6912, pp.2219-2228, 2008.
DOI : 10.1109/TNB.2004.833694

URL : http://rspa.royalsocietypublishing.org/content/royprsa/464/2096/2219.full.pdf

H. Kim and E. Gelenbe, Anomaly detection in gene expression via stochastic models of gene regulatory networks, BMC Genomics, vol.10, issue.Suppl 3, p.26, 2009.
DOI : 10.1186/1471-2164-10-S3-S26

URL : https://doi.org/10.1186/1471-2164-10-s3-s26

H. Kim and E. Gelenbe, Stochastic gene expression modeling with hill function for switch-like gene responses, 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.973-979, 2012.
DOI : 10.1109/BIBM.2010.5706581

H. Kim and E. Gelenbe, Reconstruction of Large-Scale Gene Regulatory Networks Using Bayesian Model Averaging, 2011 IEEE International Conference on Bioinformatics and Biomedicine, pp.259-265, 2012.
DOI : 10.1109/BIBM.2011.95

E. Gelenbe, Natural Computation, The Computer Journal, vol.55, issue.7, pp.848-851, 2012.
DOI : 10.1093/comjnl/bxs077

H. Kim, T. Park, and E. Gelenbe, Identifying disease candidate genes via large-scale gene network analysis, International Journal of Data Mining and Bioinformatics, vol.10, issue.2, pp.175-188, 2014.
DOI : 10.1504/IJDMB.2014.064014

URL : http://sa.ee.ic.ac.uk/publications/kim2012ident.pdf

E. Gelenbe and Y. Yin, Deep learning with random neural networks, International Joint Conference on Neural Networks. (2016), pp.1633-1638
DOI : 10.1109/ijcnn.2016.7727393

Y. Yin and E. Gelenbe, Deep Learning in Multi-Layer Architectures of Dense Nuclei, pp.1-10, 2016.

Y. Yin and E. Gelenbe, Single-cell based random neural network for deep learning, 2017 International Joint Conference on Neural Networks (IJCNN), pp.86-93
DOI : 10.1109/IJCNN.2017.7965840

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/59727/2/DeepAnSimplifiedRNN.pdf

E. Gelenbe:-g-networks, A Unifying Model for Neural Nets and Queueing Networks. Modelling Analysis and Simulation of Computer and Telecommunications Systems, pp.3-8, 1993.

J. Fourneau, E. Gelenbe, and R. Suros, G-Networks with Multiple Class Negative and Positive Customers. Modelling Analysis and Simulation of Computer and Telecommunications Systems, pp.30-34, 1994.
DOI : 10.1109/mascot.1994.284452

URL : https://hal.archives-ouvertes.fr/hal-01310043

E. Gelenbe and S. Timotheou, Random Neural Networks with Synchronized Interactions. Neural Computation. 20-9, pp.2308-2324, 2008.

W. Serrano and . Gelenbe, An Intelligent Internet Search Assistant Based on the Random Neural Network, Artificial Intelligence Applications and Innovations, vol.9, issue.2, pp.141-153, 2016.
DOI : 10.1145/1516539.1516543

URL : https://hal.archives-ouvertes.fr/hal-01557632

W. Serrano, A Big Data Intelligent Search Assistant Based on the Random Neural Network, International Neural Network Society Conference on Big Data, vol.87, issue.4, pp.254-261, 2016.
DOI : 10.1103/PhysRevE.87.032125

W. Serrano and E. Gelenbe, Intelligent search with deep learning clusters, 2017 Intelligent Systems Conference (IntelliSys), pp.254-267, 2017.
DOI : 10.1109/IntelliSys.2017.8324360

W. Serrano and E. Gelenbe, The Deep Learning Random Neural Network with a Management Cluster, International Conference on Intelligent Decision Technologies, vol.61, pp.185-195, 2017.
DOI : 10.1016/j.neunet.2014.09.003

L. Kasun, H. Zhou, and G. Huang, Representational learning with extreme learning machine for big data, IEEE Intelligent Systems, vol.28, issue.6, pp.31-34, 2013.