V. D. Anezakis, K. Dermetzis, L. Iliadis, and S. Spartalis, Fuzzy Cognitive Maps for Long-Term Prognosis of the Evolution of Atmospheric Pollution, Based on Climate Change Scenarios: The Case of Athens, ICCCI 2016, pp.175-18610, 2016.
DOI : 10.1016/j.jenvman.2012.09.032

V. D. Anezakis, K. Demertzis, L. Iliadis, and S. Spartalis, Evolving Systems (2017). https://doi.org/10, pp.12530-12547, 1007.

A. G. Asuero, A. Sayago, and A. G. Gonzalez, The Correlation Coefficient: An Overview, Critical Reviews in Analytical Chemistry, vol.9, issue.4, pp.41-59, 2006.
DOI : 10.1007/s00769-004-0854-6

C. Capinha, P. Anastácio, and J. A. Tenedório, Predicting the impact of climate change on the invasive decapods of the Iberian inland waters: an assessment of reliability, Biological Invasions, vol.24, issue.395, pp.1737-1751, 2012.
DOI : 10.1016/j.tree.2009.06.008

G. Coro, L. G. Vilas, C. Magliozzi, A. Ellenbroek, P. Scarponi et al., Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea, Ecological Modelling, vol.371, pp.37-49, 2018.
DOI : 10.1016/j.ecolmodel.2018.01.007

M. Gevrey and S. P. Worner, Prediction of Global Distribution of Insect Pest Species in Relation to Climate by Using an Ecological Informatics Method, Journal of Economic Entomology, vol.99, issue.3, pp.979-986, 2006.
DOI : 10.1093/jee/99.3.979

R. Gras, D. Devaurs, A. Wozniak, and A. Aspinall, An Individual-Based Evolving Predator-Prey Ecosystem Simulation Using a Fuzzy Cognitive Map as the Behavior Model, Artificial Life, vol.15, issue.4, pp.423-463, 2009.
DOI : 10.1002/cfg.285

URL : https://hal.archives-ouvertes.fr/hal-00862372

L. N. Hoveka, B. S. Bezeng, K. Yessoufou, J. S. Boatwright, and M. Van-der-bank, Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa, South African Journal of Botany, vol.102, pp.33-38, 2016.
DOI : 10.1016/j.sajb.2015.07.017

J. M. Jung, W. H. Lee, and S. Jung, Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX, Entomological Research, vol.81, issue.4, pp.223-235, 2016.
DOI : 10.1093/jee/81.4.973

J. M. Jung, S. Jung, M. R. Ahmed, B. K. Cho, and W. H. Lee, Invasion risk of the yellow crazy ant (Anoplolepis gracilipes) under the Representative Concentration Pathways 8

, Korea. Journal of Asia-Pacific Biodiversity, vol.10, issue.4, pp.548-554, 2017.

S. Lowe, M. Browne, S. Boudjelas, and M. De-poorter, 100 of the World's Worst Invasive Alien Species: A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC, 2000.

D. R. Paini, S. P. Worner, D. C. Cook, P. J. De-barro, and M. B. Thomas, Using a self-organizing map to predict invasive species: sensitivity to data errors and a comparison with expert opinion, Journal of Applied Ecology, vol.43, issue.2, pp.290-298, 2010.
DOI : 10.1007/978-3-642-56927-2

Z. Qin, J. E. Zhang, A. Ditommaso, R. L. Wang, and K. M. Liang, Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models, Climatic Change, vol.16, issue.1-2, pp.193-208, 2016.
DOI : 10.1007/s10530-013-0559-z

D. S. Ramsey and G. L. Norbury, Predicting the unexpected: using a qualitative model of a New Zealand dryland ecosystem to anticipate pest management outcomes, Austral Ecology, vol.16, issue.4, pp.409-421, 2009.
DOI : 10.1007/978-94-015-8702-0

I. C. Robert and J. M. Hugh, A neutral terminology to define 'invasive' species, Diversity and Distributions, vol.10, issue.2, pp.135-141, 2004.

R. Sadeghi, R. Zarkami, K. Sabetraftar, and P. Van-damme, Use of support vector machines (SVMs) to predict distribution of an invasive water fern Azolla filiculoides (Lam.) in Anzali wetland, southern Caspian Sea, Iran, Ecological Modelling, vol.244, pp.117-126, 2012.
DOI : 10.1016/j.ecolmodel.2012.06.029

J. L. Salmeron and W. Froelich, Dynamic Optimization of Fuzzy Cognitive Maps for Time Series Forecasting. Knowledge-Based Systems, pp.29-37, 2016.

N. Scafetta and R. C. Willson, ACRIM total solar irradiance satellite composite validation versus TSI proxy models, Astrophysics and Space Science, vol.30, issue.3???4, pp.421-44210, 2014.
DOI : 10.1029/2002GL016038

R. Vidal, J. L. Salmeron, A. Mena, and V. Chulvi, Fuzzy Cognitive Map-based selection of TRIZ (Theory of Inventive Problem Solving) trends for eco-innovation of ceramic industry products, Journal of Cleaner Production, vol.107, pp.202-214, 2015.
DOI : 10.1016/j.jclepro.2015.04.131

C. J. Wang, J. Z. Wan, and Z. X. Zhang, Expansion potential of invasive tree plants in ecoregions under climate change scenarios: an assessment of 54 species at a global scale, Scandinavian Journal of Forest Research, vol.32, issue.8, pp.663-670, 2017.
DOI : 10.1111/ddi.12165