M. Agache and B. J. Oommen, Generalized pursuit learning schemes: new families of continuous and discretized learning automata, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.32, issue.6, pp.738-749, 2002.
DOI : 10.1109/TSMCB.2002.1049608

N. Baba and Y. Mogami, A new learning algorithm for the hierarchical structure learning automata operating in the nonstationary S-model random environment, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.32, issue.6, pp.750-758, 2002.
DOI : 10.1109/TSMCB.2002.1049609

O. C. Granmo and B. J. Oommen, Solving Stochastic Nonlinear Resource Allocation Problems Using a Hierarchy of Twofold Resource Allocation Automata, IEEE Transactions on Computers, vol.59, issue.4, pp.545-560, 2009.
DOI : 10.1109/TC.2009.189

L. Jiao, X. Zhang, B. J. Oommen, and O. C. Granmo, Optimizing channel selection for cognitive radio networks using a distributed Bayesian learning automata-based approach, Applied Intelligence, vol.11, issue.4, pp.307-321, 2016.
DOI : 10.1109/TWC.2012.020812.110025

M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, Guest editorial learning automata: theory, paradigms, and applications, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.32, issue.6, pp.706-709, 2002.
DOI : 10.1109/TSMCB.2002.1049604

B. J. Oommen and M. Agache, Continuous and discretized pursuit learning schemes: various algorithms and their comparison, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.31, issue.3, pp.277-287, 2001.
DOI : 10.1109/3477.931507

G. I. Papadimitriou, Hierarchical discretized pursuit nonlinear learning automata with rapid convergence and high accuracy, IEEE Transactions on Knowledge and Data Engineering, vol.6, issue.4, pp.654-659, 1994.
DOI : 10.1109/69.298184

A. S. Poznyak and K. Najim, Learning Automata and Stochastic Optimization, 1997.

M. A. Thathacha and P. S. Sastry, Networks of Learning Automata: Techniques for Online Stochastic Optimization, 2004.

M. L. Tsetlin, Finite automata and the modeling of the simplest forms of behavior, Uspekhi Matem Nauk, vol.8, pp.1-26, 1963.

A. Yazidi, O. C. Granmo, B. J. Oommen, and M. Goodwin, A Novel Strategy for Solving the Stochastic Point Location Problem Using a Hierarchical Searching Scheme, IEEE Transactions on Cybernetics, vol.44, issue.11, pp.2202-2220, 2014.
DOI : 10.1109/TCYB.2014.2303712

A. Yazidi, X. Zhang, L. Jiao, and B. J. Oommen, The Hierarchical Continuous Pursuit Learning Automation: A Novel Scheme for Environments with Large Numbers of Actions, 2018.

X. Zhang, O. C. Granmo, and B. J. Oommen, The Bayesian Pursuit Algorithm: A New Family of Estimator Learning Automata, Proceedings of IEA-AIE 2011, pp.608-620, 2011.
DOI : 10.1109/CIT.2010.46

X. Zhang, O. C. Granmo, and B. J. Oommen, Discretized Bayesian Pursuit ??? A New Scheme for Reinforcement Learning, Proceedings of IEA-AIE 2012, pp.784-793, 2012.
DOI : 10.1007/978-3-642-31087-4_79

X. Zhang, O. C. Granmo, and B. J. Oommen, On incorporating the paradigms of discretization and Bayesian estimation to create a new family of pursuit learning automata, Applied Intelligence, vol.26, issue.3, pp.782-792, 2013.
DOI : 10.1109/3477.517033

X. Zhang, O. C. Granmo, B. J. Oommen, and L. Jiao, A formal proof of the ??-optimality of absorbing continuous pursuit algorithms using the theory of regular functions, Applied Intelligence, vol.39, issue.3, pp.974-985, 2014.
DOI : 10.1007/s10489-013-0424-x

X. Zhang, B. J. Oommen, and O. C. Granmo, The design of absorbing Bayesian pursuit algorithms and the formal analyses of their ??-optimality, Pattern Analysis and Applications, vol.22, issue.6, pp.797-808, 2017.
DOI : 10.1109/21.199471