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Abstract. Selecting features from high-dimensional datasets is an important 

problem in machine learning. This paper shows that in the context of filter 

methods for feature selection, the estimator of the criterion used to select 

features plays an important role; in particular the estimators may suffer from a 

bias when comparing smooth and non-smooth features. This paper analyses the 

origin of such bias and investigates whether this bias influences the results of 

the feature selection process. Results show that non-smooth features tend to be 

penalised especially in small datasets. 
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1 Introduction 

High-dimensional datasets are now ubiquitous. Selecting a subset of the most relevant 

features is useful to ease the learning process, to alleviate the curse of dimensionality, 

to increase the interpretability of features, to visualise data, among others. Many 

works focus on methods to reduce the number of features in datasets [1–7]. These 

methods can be roughly categorised into filter methods, wrappers and embedded 

methods that all have their respective advantages and drawbacks [1]. This paper 

focuses on filter methods, which have the advantage to be fast because they do not 

require to train any model during the feature selection process, contrarily to wrappers 

[6] and embedded methods [8]. 

Filters use a relevance criterion during the feature selection process. Three popular 

relevance criteria used to select features in regression tasks are the correlation, the 

mutual information and the noise variance. This paper focuses on mutual information 

and noise variance because of their property to be able to detect features that have 



nonlinear relationships with the variable to predict. It shows that the statistical 

estimators of mutual information and of noise variance both suffer from a bias, mostly 

when small samples are considered, and that this bias may affect the selection of the 

features. The paper also shows that this bias disappears in large datasets, but faster 

when using noise variance than when using mutual information. 

The remaining of the paper is organised as follows. Feature selection in regression 

with filters is detailed in Section 2. Section 3 analyses the behaviour of mutual 

information and Delta Test, and discusses the potential bias for small sample datasets. 

In order to confirm the bias and its consequences, simple experiments are described in 

Section 4 and their results are shown in Section 5. Finally, conclusions are given in 

Section 6. 

2 Feature Selection with Filters 

In the context of filter methods for feature selection, a relevance criterion is necessary 

to select the most relevant features among all the available ones. The relevance 

criterion aims at measuring the existing relationship between a feature or a set of 

features and the variable to predict. There exist several relevance criteria. Correlation 

is the simplest one, but it is only able to detect linear relationships between random 

variables, and it is restricted to the univariate case (sets of features can only be 

evaluated individually, which prevents to take into account the possible relations 

between the features themselves). In this paper, we focus on nonlinear and 

multivariate relationships between a set of random input variables and one random 

output variable. For this type of relationships, mutual information (MI) and noise 

variance are both popular measures used as relevance criteria for filter methods. Both 

need to be estimated in practice on a finite set of data: traditional estimators are the 

Kraskov estimator for the former and the Delta Test for the latter. These criteria have 

been repeatedly used for feature selection in regression problems [9,10]. 

This section reviews the mutual information (MI) and noise variance criteria, and 

their Kraskov and Delta Test estimators. Both estimators are based on k-nearest 

neighbours. The next sections show that these estimators implicitly take into account 

a measure of smoothness (Section 3), which could lead to a bias in the choice of 

features during the feature selection process (Sections 4 and 5). 

2.1 Feature Selection with Mutual Information 

Mutual information (MI) is a popular criterion for filter methods [5,11–14]. Based on 

entropy, it is a symmetric measure of the dependence between random variables, 

introduced by Shannon in 1948 [15]. MI measures the information contained in a 

feature, or in a group of features, with respect to another one. It has been shown to be 

a reliable criterion to select relevant features in classification [16] and regression 

[9,10,17,18]. This paper focuses on regression problems. 

Let X and Y be two random variables, where X represents the features and Y the 

target. MI measures the reduction in the uncertainty on Y when X is known 



 

Where 

(1) 

 

is the entropy of Y and 

(2) 

 
(3) 

is the conditional entropy of Y given X. The mutual information between X and Y is 

equal to zero if and only if they are independent. If Y can be perfectly predicted as a 

function of X, then I(X;Y) = H(Y). 

In addition to the criterion, feature selection needs a search procedure to find the 

best feature subset among all possible ones. Given the exponential number of possible 

subsets, search procedures such as greedy search or genetic algorithms are used to 

find the best subset of features without having to compute the selection criterion 

between all subsets of variables and the output. Among these subsets, the one 

maximising the MI with the output is selected. 

In practice, MI cannot be directly computed because it is defined in terms of 

probability density functions. These probability density functions are unknown when 

only a finite sample of data is available. Therefore, MI has to be estimated from the 

dataset. The estimator introduced by Kraskov et al. [19] is based on a k-nearest 

neighbour method and results from the Kozachenko-Leonenko entropy estimator [20] 

 

(4) 

where k is the number of neighbours, N is the number of instances in the dataset, d is 

the dimensionality, cd = (2π
d/2

)/Γ(d/2) is the volume of the unitary ball of dimension 

d, ϵk(i) is twice the distance from the i
th 

instance to its k
th 

nearest neighbour and ψ is 

the digamma function. 

Kraskov estimator (4) of the mutual information is then 

 

(5) 

 where τx(i) is the number of points located no further than the distance ϵX(i,k)/2 from 

the i
th 

observation in the X space, τy(i) is the number of points located no further than 

the distance ϵY(i,k)/2 from the i
th 

observation in the Y space and where ϵX(i,k)/2 and 

ϵY(i,k)/2 are the projections into the X and Y subspaces of the distance between the i
th 

observation and its k
th 

neighbour. 



2.2 Feature Selection with Noise Variance 

Noise variance is another filter criterion used for feature selection. Its definition is 

even more intuitive than mutual information. With this filter criterion, the noise 

represents the error in estimating the output variable by a function of the input 

variables, under the hypothesis that this function could be built (by a machine 

learning regression model). It is a filter criterion because it does not require building a 

regression model, but it is close to the idea of a wrapper method because the goal is to 

evaluate how good a model could be. 

Let us consider a dataset with N instances, d features Xj, a target Y and N input-

output pairs (xi,yi). The relationship between these input-output pairs is 

 (6) 

where f is the unknown function between xi and yi, and ϵi is the noise or prediction 

error when estimating f. The principle is to select the subsets of features which lead to 

the lowest prediction error, or lowest noise variance [17]. 

In practice the noise variance has to be estimated, e.g. with the Delta Test [18]. The 

Delta Test δ is defined as 

 

(7) 

where N is the size of the dataset, yNN(i) is the output associated to xNN(i), xNN(i) being the 

nearest neighbour of the point xi. 

Similarly to the use of mutual information for feature selection, when using the 

Delta Test the relationships between several subsets of features and Y are computed, 

again with a search procedure such as a greedy search. Among these subsets of 

features, the one minimising the value of δ with Y will be selected. The Delta Test has 

also been widely used for feature selection [21,22]. 

3 Behaviour of kNN-based Estimators of Relevance Criteria in 

Small Sample Scenarios 

This section analyses the behaviour of the mutual information and noise variance 

estimators in small datasets. 

3.1 Mutual Information Analysis 

The Kraskov estimator (5) can be used to estimate MI in regression. However, as a 

kNN-based estimator of I(X;Y) = H(Y)−H(Y|X), it is affected by the degree of 

smoothness of the relationship between the target and the considered features. Indeed, 

the Kraskov estimator assumes that the conditional distribution p(Y|X) is stationary in 

the k-neighbourhood of x. However, if the neighbourhood of x is large, which is the 



case when the sample is small, this hypothesis does not hold anymore and the interval 

of observed values for Y will widen. The Kraskov estimator will consequently 

overestimate the conditional entropy H(Y|X) and underestimate I(X;Y). This 

underestimation will be more severe for non-smooth functions, as the interval of Y in 

the neighbourhood of x is larger in this case. Consequently, when two features will be 

compared, the one that has the smoother relation to Y will tend to be favoured in the 

feature selection. 

3.2 Delta Test Analysis 

To estimate the variance of the noise in regression problems, the Delta Test uses a 1-

nearest neighbour method by looking for the nearest neighbour of each point of the 

dataset and by computing a variation in target values between the point and its nearest 

neighbour. 

The Delta Test, already defined in (7), can be rewritten with (6) as 

 

(8) 

where noise ϵi is i.i.d. The average behaviour of the Delta test can be characterised 

using a first order approximation f(x) ≈ f(xi)+∇f(xi)
T 

(x − xi), based on the assumption 

that the nearest neighbour is close enough to make this approximation sufficiently 

accurate. The expected value of the Delta Test is then approximated as 

 

(9) 

The first term of (9) is the noise variance, but the second term is related to the 

smoothness of f and is independent from the noise variance: it measures how much f 

changes on average from an instance x to its closest neighbour xNN. This second term 

is affected by two factors. First, if the gradient is small (i.e. the function is smooth), 

the second term remains small. Second, if instances and their closest neighbours are 

close (i.e. the dataset is quite large), the second term also remains small. Hence, for 

small datasets, the second term penalises non-smooth functions. 

3.3 Discussion 

In small datasets, smooth relations between features and output will have, on average, 

a smaller Delta Test or a higher MI result. On the opposite, a nonsmooth relation will 



have, on average, a larger Delta Test or smaller MI result, even with the same level of 

target noise. As discussed above, estimators based on k-nearest neighbours methods 

seem to be biased by the smoothness of functions. The two estimators make the 

assumption that the function does not vary too much in the proximity of the 

neighbours. However, in small sample and with non-smooth functions, this 

assumption is violated, which introduces a bias in the estimators. It is thus anticipated 

that smooth features will tend to be selected first when comparing two features that 

have the same level of information content to predict output Y. However, this short 

analysis does not answer the question whether this estimation bias has a real influence 

during the feature selection process, nor if the problem is more severe with MI or with 

noise variance. The next section evaluates these questions by experiments. 

4 Experimental Settings 

In order to study how much the smoothness can be a bias for selection criteria such as 

the mutual information or Delta Test in regression, experiments performed in this 

paper consider several functions with various smoothnesses and several sizes of 

datasets. These experiments are conducted to give some insights to the questions 

raised in the previous section, i.e. does the estimation bias has an influence while 

comparing features, and is the problem more severe with MI or with noise variance. 

Six different periodic functions have been generated with different frequencies and 

different levels of noise: 

y1 = f1(x) = sin(x) + ϵ where ϵ ~ N(0,0.05) 

y2 = f2(x) = sin(3x) + ϵ where ϵ ~ N(0,0.05) 

y3 = f3(x) = sin(9x) + ϵ where ϵ ~ N(0,0.05) 

y4 = f4(x) = sin(x) + ϵ where ϵ ~ N(0,0.3) 

y5 = f5(x) = sin(3x) + ϵ where ϵ ~ N(0,0.3) 

y6 = f6(x) = sin(9x) + ϵ where ϵ ~ N(0,0.3) 

(10) 

Figures 1(a), 1(b), 1(c), 1(d), 1(e) and 1(f) represent the six functions f1, f2, f3, f4, f5 and 

f6, respectively. In theory, features associated to f1, f2 and f3 (resp. f4, f5, f6) should be 

selected equally in a feature selection process, as prediction errors (or levels of noise) 

are identical. 

The experiments have been performed with various sizes of samples, from 

extremely small to large ones. For each size of the sample, an estimator of the two 

decision criteria, the mutual information and the noise variance, has been used to 

drive the selection process, in order to show the influence of the bias introduced by 

the smoothness of the function on both criteria. For the noise variance, the estimator 

used is the Delta Test, based on a k-NN method with 1-nearest neighbour, and 

described in Section 2.2. For the mutual information, the estimator used is the one 

introduced by Kraskov et al. and described in Section 2.1, also based on a k-NN 

method (with k=6 as suggested in [19]). All experiments have been repeated 10 times; 

averages are reported. 



 

   
(a) f1(x) = sin(x) + ϵ      

where ϵ ~ N(0,0.05) 

 

(b) f2(x) = sin(3x) + ϵ    

where ϵ ~ N(0,0.05) 

 

(c) f3(x) = sin(9x) + ϵ  

where ϵ ~ N(0,0.05) 

 

   
(d) f4(x) = sin(x) + ϵ      

where ϵ ~ N(0,0.3) 

(e) f5(x) = sin(3x) + ϵ    

where ϵ ~ N(0,0.3) 

(f) f6(x) = sin(9x) + ϵ  

where ϵ ~ N(0,0.3) 

Fig.1. Experimental data generated with various frequencies and different levels of noise 

variance. 

  



 

 (a) (b) 

 

 (c) (d) 

Fig.2. Average values of MI measures for 3 functions with a low level of noise (a) and for 3 

functions with a higher level of noise (c), and of Delta Test for 3 functions with a low level of 

noise (b) and 3 functions with a higher level of noise (d). 

5 Experimental Results 

Figure 2 represents the average value (on 10 repetitions) of the mutual information 

estimator (2(a) and 2(c)) and the Delta Test estimator (2(b) and 2(d)), for increasing 

sizes of the dataset. 

All figures show a clear effect in overestimating the noise variance and 

underestimating the mutual information in small datasets. The over- and 

underestimations are much more severe for non-smooth functions (f3 and f6). It is also 

clear that when the size of the dataset increases, the biases tend to disappear. What is 

more interesting to see is that the asymptotic values of the Delta Test are reached in 

this experiment when the dataset includes a few hundreds of instances, while for the 



MI a few thousands of instances are necessary, in the same experiment (the horizontal 

logarithmic scales with the number of instances are different in the left and right 

figures). This is an argument in favour of using the noise variance rather than the 

mutual estimation. 

When comparing the upper and lower parts of Figure 2 (both left -MI- and right -

noise variance-), it is also interesting to see that for small samples, the order of 

selection between features can be inverted. For example, let us consider the Delta Test 

values in Figures 2(b) and 2(d) for three cases. First, for 40 instances, the 6 functions 

will be ranked in the following order: f1, f2, f4, f5, f3 and f6, given that the features with 

the lower Delta values are selected first. Without the bias effect shown in this paper, it 

would have been expected that f1, f2 and f3 would be selected first, as their capacity to 

predict Y is higher (or their noise is lower) than for f4, f5 and f6. Second, for 70 

instances, the 6 functions will be ranked in the following order f1, f2, f3, f4, f5 and f6. In 

this case, the order of selection between features is not inverted anymore but the bias 

still remains. Finally, for approximately 300 instances, the bias disappears, the 3 

functions f1, f2, f3 obtain the same Delta value and the 3 functions f4, f5, f6 obtain 

another unique Delta value, higher than the one for f1, f2, f3. These cases show that, for 

small samples, the bias has an influence on the order of selection between features 

and that it disappears with a larger dataset. A similar behaviour can be observed for 

MI in figures 2(a) and 2(c). 

6 Conclusion 

To the best of our knowledge, no work in the literature focuses on the bias explicitly 

associated to the smoothness in a feature selection context. Wookey and Konidaris 

[23] use smoothness as a prior knowledge during feature selection, but only for data 

regularization. 

This paper shows that an overestimation of the noise variance and an 

underestimation of the mutual information can occur in small datasets when the 

function to estimate is not smooth. Experiments have been conducted with both 

criteria on functions with various smoothnesses and levels of noise, for different sizes 

of datasets. They confirm the theoretical discussion and show that the biases in the 

estimations are much more severe when using mutual information than when using 

the noise variance; this is an argument in favour of using the latter rather than the 

former. 

The experiments also confirm that in a feature selection process, where a decision 

to select a feature is taken by comparing values of the criteria between different 

possible features or groups of features, the order of selection may be affected (a 

smooth feature with a low dependency to the output could be selected before a non-

smooth with a high dependency). This is a serious shortcoming that should be taken 

into account when designing a feature selection algorithm. For example the noise 

variance could be explicitly estimated and used to remove the bias, or the selection 

process could be improved to favour non-smooth features. 
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