
HAL Id: hal-01821058
https://inria.hal.science/hal-01821058

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Evaluation of Regression Algorithms Performance
for the Chemical Process of Naphthalene Sublimation
Florin Leon, Andrei-Ștefan Lupu, Sabina-Adriana Floria, Doina Logofătu,

Silvia Curteanu

To cite this version:
Florin Leon, Andrei-Ștefan Lupu, Sabina-Adriana Floria, Doina Logofătu, Silvia Curteanu. An Eval-
uation of Regression Algorithms Performance for the Chemical Process of Naphthalene Sublimation.
14th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI),
May 2018, Rhodes, Greece. pp.219-230, �10.1007/978-3-319-92007-8_19�. �hal-01821058�

https://inria.hal.science/hal-01821058
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Evaluation of Regression Algorithms Performance

for the Chemical Process of Naphthalene Sublimation

Silvia Curteanu
1
, Florin Leon

2
, Andrei-Ștefan Lupu

3
, Sabina-Adriana Floria

4
,

Doina Logofătu
5

1Department of Chemical Engineering and Environmental Protection

“Gheorghe Asachi” Technical University of Iaşi

Iași, Romania
scurtean@ch.tuiasi.ro

2,4Department of Computer Science and Engineering

“Gheorghe Asachi” Technical University of Iaşi

Iaşi, Romania

florin.leon@tuiasi.ro, sabina.floria@tuiasi.ro

3School of Electronics and Computer Science

University of Southampton, UK

 Southampton, UK
asl1u12@soton.ac.uk

5Faculty of Computer Science and Engineering

Frankfurt University of Applied Sciences

Frankfurt, Germany
logofatu@fb2.fra-uas.de

Abstract. Different regression algorithms are applied for predicting the

sublimation rate of naphthalene in various working conditions: time,

temperature, trainer rate and shape of the sample. The original Large Margin

Nearest Neighbor Regression (LMNNR) algorithm is applied and its

performance is compared to other well-established regression algorithms, such

as support vector regression, multilayer perceptron neural networks, classical

k-nearest neighbor, random forest, and others. The experimental results

obtained show that the LMNNR algorithm provides better results than the other

regression algorithms.

Keywords: regression, large margin, nearest neighbor, naphthalene

sublimation.

1 Introduction

Machine learning is a subdomain of artificial intelligence whose popularity and

success are constantly growing [1, 2]. Its main goal is to extract high-level patterns,

i.e. knowledge, from large amounts of raw information, patterns that can provide

more abstract and useful insight into the data under study. Many problems in science

and social science can be expressed as classification or regression problems, where

one does not know an analytical model of some underlying phenomenon, but sampled

data is available through experiments or observations, and the aim is to define a

predictive model based on those samples. To date, many such algorithms have been

proposed, which belong to different paradigms, e.g. neural networks, nearest

neighbor, decision trees, support vector machines, Bayesian approaches, etc.

Unfortunately, there is no single best algorithm that can handle the large variety of

situations encountered in practice. Each method has its own advantages and

disadvantages. They are mainly related to the flexibility or complexity of the models

and their generalization capabilities. For a non-trivial pattern, using a very simple

model may result in poor performance, whereas using an overly complex model can

result in overfitting, i.e. very good results for the training set and poor results for the

test set or prediction, in general. Therefore, one must make several choices when

dealing with such a problem: first, to establish the most appropriate learning method

and, second, to control the complexity of the model generated with that learning

method by changing its specific parameters.

In the present paper, we investigate the performance of some well-established

algorithms in comparison to an original regression algorithm, namely the Large

Margin Nearest Neighbor Regression (LMNNR), which combines the idea of nearest

neighbors with that of a large separation margin, typical of support vector machines.

The sublimation of naphthalene was chosen to illustrate these methodologies based on

the difficulties involved due to the toxicity of the process, in which case predictions

on the model become recommended and useful.

We organize our paper as follows. Section II presents a selection of related work

about regression algorithms applied for the modeling of chemical processes. Section

III describes the dataset used for the experiments and Section IV presents the

algorithms employed to model it. Section V describes some experimental results,

while Section VI contains the conclusions of our work.

2 Related Work

There are many applications of artificial intelligence and soft computing methods in

the domain of chemical engineering, especially for modeling and optimization. In this

section, we review several applications of regression algorithms for chemical

processes.

Article [3] proposes a combination of online support vector regression with an

ensemble learning system to adapt to nonlinear and time-varying changes in process

characteristics and various process states in a chemical plant. [4] uses a probabilistic

combination of local independent component regression in order to assess the quality

of chemical processes with multiple operation modes. [5] addresses a non-linear,

time-variant problem of soft sensor modeling for process quality prediction using

locally weighted kernel principal component regression. [6] uses multiple linear

regressions and least squares support vector regression to model and optimize the

dependency of methyl orange removal with various adsorption influential parameters.

[7] compares the performance of support vector regression, neural network and

random forest models in predicting and mapping soil organic carbon stocks.

In [8], the authors make a thorough presentation of neural networks used for

bioprocessing and chemical engineering, with applications in process forecasting,

modeling, control of time-dependent systems, and the hybridization between neural

networks and expert systems.

The issue of predicting sublimation thermodynamics, such as enthalpy, entropy,

and free energy of sublimation using machine learning methods was addressed in [9].

Semi-empirical models were used to model systems of solids and supercritical fluids

in order to determine sublimation pressures and sublimation enthalpies, and then to

model different multiphasic equilibriums [10].

Some of the recent research of the authors of the present paper addressed a perfor-

mance comparison of different regression methods for a polymerization process with

adaptive sampling [11], a comparison between simulation and experiments for phase

equilibrium and physical properties of aqueous mixtures [12], an experimental

analysis and mathematical prediction of cadmium removal by biosorption [13] and the

prediction of corrosion resistance of some dental metallic materials with an original

adaptive regression model based on the k-nearest-neighbor regression technique [14].

3 The Naphthalene Sublimation Dataset

Our case study is naphthalene sublimation – a physical process of solids that

transition directly into vapors. This technique is one of the most convenient methods

to study heat and mass transfer. In addition, the rate of sublimation, the amount of

solid converted to vapor per time unit and solid area unit is used to study problems

related to environment protection, health protection, transportation safety and

security, meteorology, by determining the concentration of various substances in the

environment and the dynamical properties in a wind tunnel.

 In a previous approach [15], a series of experiments were performed to investigate

the sublimation of the naphthalene samples under atmospheric pressure in air as

entrainer, without recycle. Our experimental data fulfill a necessary condition for

empirical modeling: a sufficient number of data was obtained which uniformly cover

the investigated domain.

The sample weight was measured continuously as a function of time, at different

air flow characteristics. The experimental data is then used to calculate the mass

transfer rate, the degree of sublimation, the sublimation front position; the influence

of air flow characteristics was also evaluated.

More details on experiments and data processing can be found in [15], where

neural network modeling was performed. In the current work, a more efficient

algorithm, LMNNR, was applied, comparatively with other algorithms: linear

regression, support vector regression, neural networks, k-Nearest Neighbors, K*, and

Random Forest. In addition, a large dataset was used here (1323 instances) including

different shapes of the samples, while in [15] only spherical samples were considered

(150 instances).

The data gathered from experiments contains four variables as inputs: the shape of

the sample (i.e. pallets, small pills, large pills and rods), time, air speed (the trainer)

and temperature, and one output: the speed of naphthalene sublimation.

Consequently, the modeling purpose was to evaluate the performance of the

process, quantified by the sublimation rate depending on process time, entrainer

temperature, and entrainer flow rate.

In order to apply the instance-based methods, the data is normalized between 0

and 1, independently for each numerical attribute.

Fig. 1. Statistics of the inputs and the output of the naphthalene sublimation dataset

 Fig. 1 presents some statistics regarding the distribution of the data before

normalization: the histogram for the first discrete input and a box plot for each

numerical input, showing the minimum value, the first quartile, the median, the third

quartile and the maximum value. For the output, two box plots are included, with a

linear and a logarithmic scale. The output has values between 0.003 and 832.98, with

the mean of 34.95 and the median of 9.24. There are a few greater values far from the

median, but they are not outliers; they are important results of the process, difficult to

learn, and which need to be handled accordingly by the regression models.

4 Regression Algorithms

The goal of the paper was to find a good model for the naphthalene sublimation data.

The first step was to apply classical methods, with known good performance,

implemented in Weka [16]. This was intended to constitute a basis for comparison

with the original LMNNR algorithm. From the large number of algorithms in Weka, a

few were selected which, in previous studies, were noticed to yield good performance

for a large number of regression problems. Thus, neural networks, support vector

machines, nearest neighbor, K-Star and random forest were selected. The details

about their structure and operation are given below.

It must be emphasized that these techniques have very different nature and as-

sumptions, and, by comparing the LMNNR results with the best results obtained with

either of these classical algorithms, we can underline that the algorithm proposed by

the authors is, in fact, a good alternative for regression.

4.1 Classical Algorithms

Neural networks in the form of multilayer perceptrons (MLP) are often used in

classification and regression problems. The structure of an MLP contains an input

layer, an output layer and one or more hidden layers of neurons. Each neuron sums

the weighted input data of the neurons in the previous layer, to which another term

(bias) is added, and the result is sent to the neurons in the next layer through a

nonlinear transformation called an activation function. Each connection has an

associated weight. In the training process, the weights and biases are adjusted such

that the output of the network should match the desired output of the vectors from the

training set. The training algorithm used most often is back-propagation [17]. It aims

to minimize the mean-squared error between the desired output and the computed one

using the gradient descent method.

The Epsilon-Support Vector Regression (ε-SVR) algorithm tries to approximate the

desired continuous output within a tolerating error ε while using the idea of the large

margin characteristic of support vector machines [18]. When the data is not linearly

separable, the ε-SVR algorithm uses kernels to transform them into a higher-

dimensional space. There are several types of functions that can be used as kernels,

e.g. polynomial or radial basis functions (RBF). If some training instances still do not

satisfy the constraints, slack variables are introduced to allow some errors (soft

margin). The number of these erroneous instances can be controlled with a cost

parameter C. If the value of C is decreased, a larger number of incorrectly classified

training instances is allowed, which can however lead to better generalization.

The k-Nearest Neighbor (kNN) algorithm is based on the choice of k nearest

neighbors using a distance function as a criterion and the output is computed by

aggregating the outputs of those k training instances. As a distance function, one can

use Euclidian or Manhattan distance, usually particularizations of the Minkowski

distance. Choosing the value of k is important. If k is too small, then the classification

can be affected by the noise in the training data, and if the value of k is too large, then

distant neighbors can affect the correctness of the results. To avoid the difficulty of

finding an optimum value for k, one can weight the neighbor influence. The neighbors

have a greater weight as they are closer to the instance, while those farther apart have

a smaller weight.

The K-Star algorithm [19] is an instance-based classifier that very much resembles

the k-Nearest Neighbor algorithm presented before. Its novelty comes from the usage

of an entropy metric in its similarity function, rather than the usual distance metric. It

has been shown in the literature that such an approach has beneficial outcomes for

certain industry-related problems [20]. The K-Star algorithm can also be used for

regression purposes, similarly to how k-Nearest Neighbor is used.

A random forest [21] is composed of a collection of classification or regression

trees. Each tree is generated using random split tests on slightly different training set

generated using bagging. The output of a new instance is computed by aggregating

the outputs of the individual trees.

4.2 The Large Margin Nearest Neighbor Regression Algorithm

The performance of the above algorithms was compared to that of an original

algorithm, Large Margin Nearest Neighbor Regression (LMNNR) [22, 23].

The support vector machines, in a classification context, rely on the idea of find-

ing a large margin between classes by solving an optimization problem. This idea was

used in conjunction with the k-Nearest Neighbor method, also for classification [24].

Its main assumption is to change the distance metric of the kNN space by using a

matrix:

    .),(ji

T

jijiMd xxMxxxx  (1)

If M is a diagonal matrix, the weights of the neighbors are:

 
.

'

1

)',(

1
)',(

1

2







n

i

iiii
M

d

xxm
d

w
M xx

xx (2)

Equation (2) involves a single, global matrix M for all the instances. However, it is

possible to have different distance metrics for the different instances or groups of

instances. Thus, prototypes can be used which are defined as special locations in the

input space of the problem, and each prototype P has its own matrix P
M . When

computing the distance weight to a new point, an instance uses the weights of its

nearest prototype, i.e. P

iim instead of mii in equation (2).

Finding the appropriate matrices is achieved by solving an optimization problem.

In a simplified formulation, the objective function F, which is to be minimized, takes

into account two criteria with equal weights, F1 and F2, described below. In order to

briefly explain the expressions of these functions, the following notations were made,

where dM means the weighted square distance function using the weights we search

for: dij = dM(xi, xj), dik = dM(xi, xk), gij = |f(xi) – f(xj)|, gik = |f(xi) – f(xk)|.

The first criterion is:

  ,1
1)(

1 ij

n

i iNj

ij gdF  
 

 (3)

where N(i) is the set of the nearest k neighbors of instance i, e.g. k = 3. Basically, this

criterion says that the nearest neighbors of i should have similar values to the one of i,

and more distant ones should have different values.

The second criterion is expressed as follows:

     .0,111max
1)()(

2   
  


n

i iNj iNl

ilikijij gdgdF (4)

 Here, the distance to the neighbors with close values (the positive term) is

minimized, while simultaneously trying to maximize the distance to the neighbors

with distant values (the negative term). An arbitrary margin of at least 1 should be

present between an instance with a close value and another with a distant value.

For optimization, both an evolutionary algorithm and an approximate differential

method following the central difference definition of the derivative can be used.

The estimated output of a new query instance xq is computed as follows. Its k nearest

neighbors are identified using the distance metric from equation (1). The weights of

these neighbors are computed with equation (2) and then normalized:

.

),(

),(
),(

1





k

j

qjd

qid

qi

n

d

M

M

M

w

w
w

xx

xx
xx (5)

 Finally, the output is computed as a weighted average of the neighbor outputs:

   .),(
~

1

i

k

i

qi

n

dq fwf
M

xxxx 


 (6)

5 Results and Discussion

In this section, the choice of parameters for different regression methods is explained.

For each algorithm, multiple experiments with different parameter values were

performed. The tables containing the results only display those with the best

performance in terms of correlation coefficient (r) and root mean square error

(RMSE).

In order to compare the performance of the various algorithms, the cross-

validation method with 10 folds was used. Also, since an objective comparison was

intended, the data set was randomly divided into 10 groups (iteratively one for test

and the rest for training) and the same groups were used by all the algorithms. It was

considered that this methodology is particularly important to compare the algorithms

implemented in Weka with the original implementation of the LMNNR algorithm.

The results obtained for individual test groups, although interesting, were omitted in

the results section, and only the aggregated results are displayed in the following

tables.

5.1 Parameters of Regression Methods

Multilayer Perceptron Neural Network (MLP). For the problem at hand, repeated

experiments showed that a neural network produces best results when given a low

learning rate. The momentum parameter also has a great impact on learning. Its

optimal value tends to be around 0.4 or 0.5. The number of hidden layers was

automatically chosen by Weka. This option yielded the best outcomes because the

optimal number of hidden layers tends to vary between cross-validation sets, making

it hard to achieve similar performance with manually chosen values. The encoding for

the discrete input is “one-hot”, leading to 7 inputs and 1 output. The best network

architecture was the one with one hidden layer containing 4 neurons with sigmoid

activation functions, and with the output neuron with a linear activation function.

1000 epochs for training were found to be an acceptable compromise between the

quality of the resulting model and the overall training time.

Support Vector Regression (SVR). The Epsilon-SVR algorithm achieved a very

good overall fit if the kernel used was based on radial basis functions. The kernel type

choice was vastly influential on the outcome. RBF, therefore, yielded a correlation

that was at least 20% better than all of the other options (linear, polynomial and

sigmoid). The best results were obtained with relatively large values of the parame-

ters: γ = 14, C = 10, whereas ε was best kept at a low value, i.e. ε = 0.001. Fine-tuning

these parameters helped improve the algorithm performance significantly, such that

the final correlation was the best out of all the algorithms tested with Weka.

k-Nearest Neighbor (k-NN). The optimal number of neighbors used in this

algorithm is in this case 2. The correlation dropped significantly if the number of

neighbors was increased above this value. The search method used was the linear

nearest neighbor search. A slight improvement was achieved by using the Manhattan

distance as metric, instead of the Euclidean distance.

K-Star (K
*
). The only numeric parameter that this algorithm takes, the global

blending index, was optimal at low values. In the experiments, the value 3 was used.

The parameter, however, influenced the outcome in a slight manner (~5% correlation

improvement). The entropic auto blend functionality provided by Weka was turned

off for these experiments.

Random Forest (RF). In the case of this algorithm, the number of trees parameter

plays an important role in the overall performance. Several tests were conducted to

determine the optimal value of this parameter and the best outcome was recorded with

a value of approximately 200 trees. Although the difference in performance obtained

by optimizing this parameter was only around 3%, it allowed Random Forest

algorithm to yield one of the best correlations for the data.

Large Margin Nearest Neighbor Regression (LMNNR). For this algorithm, the

parameters are the number of prototypes, the number of optimization neighbors and

the number of regression neighbors. Different combinations of values for these

parameters were attempted. Since the LMNNR results are not deterministic, because

the initialization of the matrices is random and then optimized, the best results were

included out of 100 algorithm runs for each configuration.

5.2 A Comparison Between Algorithm Performance

In Tables 1 and 2, one can see the best results achieved with the use of the regression

algorithms presented in the previous section.

Table 1. The best results obtained for optimized configurations by algorithms in Weka

Algorithm Parameters r RMSE

ɛ-SVR C: 10; ε: 0.001; γ: 14; kernel: RBF 0.91514 0.04022

Random

Forest

number of features: 1;

number of trees: 200
0.91332 0.03965

k-NN k: 2; Manhattan distance 0.90639 0.04022

K* global blend: 3 0.89025 0.04450

MLP
learning rate: 0.1; momentum: 0.4;

number of training epochs: 1000
0.88344 0.04615

Linear

Regression
0.64395 0.07277

Table 2. The best results obtained with the original LMNNR algorithm

Number of

prototypes

Number of

regression

neighbors

Number of

optimization

neighbors

r RMSE

1 3 3 0.93151 0.036118

1 5 5 0.93052 0.036276

1 10 10 0.92426 0.03825

2 3 3 0.94097 0.033554

2 5 5 0.9365 0.035707

2 10 10 0.93416 0.037173

3 3 3 0.94067 0.033251

3 5 5 0.93698 0.036821

3 10 10 0.93428 0.036797

5 3 3 0.94185 0.033915

5 5 5 0.94425 0.034913

5 10 10 0.93614 0.036856

Five out of the six algorithms tested show a very good correlation of the data

(~0.9) and come in a very short range from one another. Linear regression, which is

included only for comparative reasons, achieves a low total correlation. This

emphasizes the nonlinearity of the problem at hand. ɛ-SVR and Random Forest yield

the best, almost identical, predictions. kNN and K-star present similar results, despite

the different metrics they use in their similarity functions.

From Table 2, it can be seen that the LMNNR results are clearly better than the

results obtained by other well-established regression algorithms.

Unlike the problems studied in previous works [22, 23], it can be seen that more

prototypes are needed for this particular problem. 5 prototypes provide the best results

in terms of correlation coefficient. This shows that this dataset is more difficult to

learn using a unique distance metric and that different regions of its input space have

different characteristics with can be properly addressed with the use of prototypes.
Fig. 2 shows a comparison between the predictions of the model and the desired

data, for the case with 5 prototypes, 5 regression neighbors and 5 optimization
neighbors from Table 2, which yields the highest correlation coefficient r. One can
see that the two datasets are quite close. An exception is e.g. the data point with the
value of 1. Since Fig. 2 presents the results for the 10 testing sets of the cross-
validation process put together, the data point with a maximum value in the test set
cannot be correctly approximated by the model relying on the rest of the data in the
training set. The LMNNR algorithm is based on the nearest neighbor paradigm, and
therefore it cannot extrapolate to a value that is larger than any value in the training
set. Furthermore, one can see that most of the data has small output values, and only
0.8% of the normalized data has output values above 0.5. This contributes to the
difficulty of the model to approximate higher output values.

Fig. 2. Comparison between the predictions of the model and the desired data

6 Conclusions

The results obtained by the LMNNR algorithm proposed by the authors are better

than those provided by other classical regression algorithms. These predictions are

important for the chosen process, avoiding or, at least, minimizing the number of

experiments made in toxicity conditions, and saving materials and energy. In addition,

the developed modeling methodologies can be easily adapted and applied to other

chemical engineering processes.

The promising results of LMNNR determine the planning of other applications and

methodologies that include this algorithm. As a future direction of investigation, one

can consider its further refinement in order to automatically detect the optimal values

of its parameters, namely the number of prototypes, the number of regression

neighbors and the number of optimization neighbors.

Acknowledgments

This work was supported by the “Program 4, Fundamental and Border Research,

Exploratory Research Projects” financed by UEFISCDI, project no. 51/2017.

References

1. Goodfellow, I., Bengio, ., Courville, A.: Deep Learning. The MIT Press, Cambridge,
MA, USA (2016).

2. itten, I. H., Frank, E., Hall, . A., Pal, C. J.: Data Mining. 4th edn. Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, Cambridge, MA, USA (2016).

3. Kaneko, H., Funatsu, K.: Adaptive soft sensor based on online support vector regression
and Bayesian ensemble learning for various states in chemical plants. Chemometrics and
Intelligent Laboratory Systems 137, 57-66, (2014).

4. Ge, Z., Song, Z., Wang, P.: Probabilistic combination of local independent component
regression model for multimode quality prediction in chemical processes. Chemical
Engineering Research and Design 92 (3), 509-521 (2014).

5. Yuan, X., Ge, Z., Song, Z.: Locally weighted kernel principal component regression model
for soft sensing of nonlinear time-variant processes. Industrial & Engineering Chemistry
Research 53(35), 13736-13749 (2014).

6. Ghaedi, M., Rahimi, M. R., Ghaedi, A. M., Tyagi, I., Agarwal, S., Gupta, V. K. : Applica-
tion of least squares support vector regression and linear multiple regression for modeling
removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and
activated carbon prepared from Pistacia atlantica wood. Journal of Colloid and Interface
Science 461, 425-434 (2016).

7. Were, K., Bui, D. T., Dick, Ø. B., Singh, B. R.: A comparative assessment of support
vector regression, artificial neural networks, and random forests for predicting and map-
ping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators
52, 394-403 (2015).

8. Baughman, D. R., Liu, Y. A.: Neural Networks in Bioprocessing and Chemical Engineer-
ing. Academic Press (1992).

9. McDonagh, J. L., Palmer, D. S., van Mourik, T., Mitchell, J. B. O.: Are the Sublimation
Thermodynamics of Organic Molecules Predictable? Journal of Chemical Information and
Modeling 56(11), 2162–2179 (2016).

10. Tabernero, A., Martín del Valle, E. M., Galán, M. A.: On the use of semiempirical models
of (solid + supercritical fluid) systems to determine solid sublimation properties. The
Journal of Chemical Thermodynamics 43(5), 711-718 (2011).

11. Leon, F., Curteanu, S.: Performance comparison of different regression methods for a
polymerization process with adaptive sampling. International Journal of Computer, Elec-
trical, Automation, Control and Information Engineering 10(10), 1515-1519 (2016).

12. Pirdashti, M., Movagharnejad, K., Mobalegholeslam, P., Curteanu, S., Leon, F.: Phase
equilibrium and physical properties of aqueous mixtures of poly (vinyl pyrrolidone) with
trisodium citrate, obtained experimentally and by simulation. Journal of Molecular Liquids
223, 903-920 (2016).

13. Hlihor, R. M., Diaconu, M., Leon, F., Curteanu, S., Tavares, T., Gavrilescu, M.: Experi-
mental analysis and mathematical prediction of Cd(II) removal by biosorption using
support vector machines and genetic algorithms. New Biotechnology 32(3), 358-368
(2015).

14. Chelariu, R., Suditu, G. D., Mareci, D., Bolat, G., Cimpoesu, N., Leon, F., Curteanu, S.:
Prediction of corrosion resistance of some dental metallic materials with an adaptive
regression model. The Journal of The Minerals, Metals & Materials Society (JOM) 67(4),
767-774 (2015).

15. Curteanu, S., Smarandoiu, M., Horoba, D., Leon, F.: Naphthalene sublimation. Experiment
and optimisation based on a neuro-evolutionary methodology. Journal of Industrial and
Engineering Chemistry 20(4), 1608-1611 (2014).

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H.: The WEKA
data mining software: an update. ACM SIGKDD Explorations 11(1), 10–18 (2009).

17. Rumelhart, D. E., Hinton, G.E., Williams, R. J.: Learning internal representations by error
propagation. In Parallel Distributed Processing: Explorations in the Microstructure of
Cognition 1, MIT Press Cambridge, MA, USA (1986).

18. Smola, A. J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Compu-
ting 14(3), 199-222 (2004).

19. Cleary, J. G., Trigg, L. E.: An instance-based learner using an entropic distance measure.
In: 12th International Conference on Machine Learning, pp. 108–114. (1995).

20. Painuli, S., Elangovan, M., Sugumaran, V.: Tool condition monitoring using K-star
algorithm. Expert Systems with Applications 41(6), 2638–2643 (2014).

21. Breiman, L.: Random Forests. Machine Learning 45(1), 5-32 (2001).
22. Leon, F., Curteanu, S.: Evolutionary algorithm for large margin nearest neighbour

regression. In: 7th International Conference on Computational Collective Intelligence
Technologies and Applications, pp. 286-296. (2015).

23. Leon, F., Curteanu, S.: Large margin nearest neighbour regression using different optimi-
zation techniques. Journal of Intelligent & Fuzzy Systems 32, 1321-1332 (2017).

24. Weinberger, K. Q., Saul, L. K.: Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research 10, 207–244 (2009).

