P. Koprinkova-hristova and N. Tontchev, Echo state networks for multi-dimensional dataclustering, Int. Conf. on Artificial Neural Networks 2012, pp.571-578, 2012.

H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach, GMD Report, vol.159, 2002.

M. Lukosevicius and H. Jaeger, Reservoir computing approaches to recurrent neural network training, Computer Science Review, vol.3, issue.3, pp.127-149, 2009.
DOI : 10.1016/j.cosrev.2009.03.005

P. Koprinkova-hristova, Multi-dimensional Data Clustering and Visualization via Echo State Networks, Intelligent Systems Reference Library, vol.2, issue.3, pp.93-122, 2016.
DOI : 10.1016/j.neunet.2007.04.011

P. Koprinkova-hristova and K. Alexiev, Echo state networks in dynamic data clustering Int. Conf. on Artificial Neural Networks 2013, pp.343-350, 2013.

P. Koprinkova-hristova, On effects of IP improvement of ESN reservoirs for reflecting of data structure, 2015 International Joint Conference on Neural Networks (IJCNN), pp.10-11097280703, 2015.
DOI : 10.1109/IJCNN.2015.7280703

J. J. Steil, Online reservoir adaptation by intrinsic plasticity for backpropagation???decorrelation and echo state learning, Neural Networks, vol.20, issue.3, pp.353-364, 2007.
DOI : 10.1016/j.neunet.2007.04.011

B. Schrauwen, M. Wandermann, D. Verstraeten, J. J. Steil, and D. Stroobandt, Improving reservoirs using intrinsic plasticity, Neurocomputing, vol.71, issue.7-9, pp.1159-1171, 2008.
DOI : 10.1016/j.neucom.2007.12.020

L. Bozhkov, P. Koprinkova-hristova, and P. Georgieva, Reservoir computing for emotion valence discrimination from EEG signals, Neurocomputing, vol.231, pp.28-40, 2017.
DOI : 10.1016/j.neucom.2016.03.108