M. Ansari-lari, M. Mohebbi-fani, and A. Rowshan-ghasrodashti, Causes of culling in dairy cows and its relation to age at culling and interval from calving in Shiraz, Southern Iran, Veterinary Resarch Forum, vol.3, pp.233-237, 2012.

S. Calsamiglia, L. Castillejos, S. Astiz, C. Lopez-detoro, and J. Baucells, A dairy farm simulation model as a tool to explore the technical and economical consequences of management decisions, Proceedings of the World Buiatrics Congress 2016, p.406, 2016.

D. Cavero, K. Tölle, C. Buxadé, and J. Krieter, Mastitis detection in dairy cows by application of fuzzy logic, Livestock Science, vol.105, issue.1-3, pp.207-213, 2006.
DOI : 10.1016/j.livsci.2006.06.006

J. Fetrow, K. V. Nordlund, and H. D. Norman, Invited Review: Culling: Nomenclature, Definitions, and Recommendations, Journal of Dairy Science, vol.89, issue.6, pp.1896-1905, 2006.
DOI : 10.3168/jds.S0022-0302(06)72257-3

A. Goel, C. W. Zobel, and E. C. Jones, A multi-agent system for supporting the electronic contracting of food grains, Computers and Electronics in Agriculture, vol.48, issue.2, pp.123-137, 2005.
DOI : 10.1016/j.compag.2005.02.016

W. Grzesiak, P. Blaszczyk, and R. Lacroix, Methods of predicting milk yield in dairy cows???Predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs), Computers and Electronics in Agriculture, vol.54, issue.2, pp.69-83, 2006.
DOI : 10.1016/j.compag.2006.08.004

C. Kamphuis, H. Mollenhorst, J. Heesterbeek, and H. Hogeveen, Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction, Journal of Dairy Science, vol.93, issue.8, pp.3616-3643, 2010.
DOI : 10.3168/jds.2010-3228

L. Parrott, R. Lacroix, and K. M. Wade, Design considerations for the implementation of multi-agent systems in the dairy industry, Computers and Electronics in Agriculture, vol.38, issue.2, pp.79-98, 2003.
DOI : 10.1016/S0168-1699(02)00139-4

J. R. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, pp.81-106, 1986.
DOI : 10.1037/13135-000

URL : https://link.springer.com/content/pdf/10.1007%2FBF00116251.pdf

S. Shahinfar, H. Mehrabani-yeganeh, C. Lucas, A. Kalhor, M. Kazemian et al., Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems, Computational and Mathematical Methods in Medicine, vol.2, issue.49, 2012.
DOI : 10.1090/qam/10666

URL : http://doi.org/10.1155/2012/127130

B. Sitkowska, D. Piwczy´nski, J. Aerts, M. Kolenda, and S. Özkaya, Detection of high levels of somatic cells in milk on farms equipped with an automatic milking system by decision trees technique, Turkish Journal of Veterinary and Animal Sciences, issue.41, pp.532-540, 2009.

S. Sugiono, R. Soenoko, and L. Riawati, Investigating the Impact of Physiological Aspect on Cow Milk Production Using Artificial Intelligence, International Review of Mechanical Engineering (IREME), vol.11, issue.1, pp.30-36, 2017.
DOI : 10.15866/ireme.v11i1.9873

Z. Sun, S. Samarasinghe, and J. Jago, Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks, Journal of Dairy Research, vol.77, issue.02, pp.168-175, 2009.
DOI : 10.1017/S0022029900030193

URL : https://researcharchive.lincoln.ac.nz/bitstream/10182/3327/1/detection_of_mastitis.pdf

A. Thangaraj, A. Patricia, and S. Samarasingh, Modelling a multi agent system for dairy farms for integrated decision making, 22nd International Congress on Modelling and Simulation, 2017.

E. Wang and S. Samarasinghe, On-line detection of mastitis in dairy herds using artificial neural networks, Proceedings of the International Congress on Modelling and Simulation (MODSIM'05), 2005.