P. Clark and R. Boswell, Rule induction with CN2: Some recent improvements, 5th European Conference on Artificial Intelligence, pp.151-163, 1991.
DOI : 10.1007/BFb0017011

URL : http://www.cs.utexas.edu/users/pclark/papers/newcn.ps.Z

R. S. Michalski and K. A. Kaufman, A measure of description quality for data mining and its implementation in the AQ18 learning system The Rochester Institute of Technology, ICSC Symposium on Advances in Intelligent Data Analysis, pp.22-25, 1999.

D. T. Pham, S. Bigot, and S. S. Dimov, RULES-5: A rule induction algorithm for classification problems involving continuous attributes, Proceedings of the Institution of Mechanical Engineers, pp.217-1273, 2003.
DOI : 10.1214/aos/1176346150

URL : http://orca.cf.ac.uk/2047/1/rule_induction_algorithm_for_classifcation.pdf

D. T. Pham and A. A. Afify, SRI: A Scalable Rule Induction Algorithm, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.3, issue.4, pp.537-552, 2006.
DOI : 10.1007/978-1-4899-4541-9

J. Hühn and E. Hüllermeier, FURIA: an algorithm for unordered fuzzy rule induction, Data Mining and Knowledge Discovery, vol.177, issue.11, pp.293-319, 2009.
DOI : 10.1093/biomet/31.1-2.20

A. A. Afify, A novel algorithm for fuzzy rule induction in data mining, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.1, issue.2, pp.877-895, 2014.
DOI : 10.1016/0952-1976(96)00042-5

A. A. Afify, A fuzzy rule induction algorithm for discovering classification rules, Journal of Intelligent & Fuzzy Systems, vol.14, issue.6, pp.3067-3085, 2016.
DOI : 10.1007/978-1-4899-4541-9

D. T. Pham and A. A. Afify, Rules-6: A Simple Rule Induction Algorithm for Handling Large Data Sets, Proceedings of the Institution of Mechanical Engineers, pp.219-1119, 2005.
DOI : 10.1007/978-1-4899-4541-9

URL : http://orca.cf.ac.uk/2051/1/a_simple_rule_induction_algorithm.pdf

J. Fürnkranz and P. A. Flach, An analysis of rule evaluation metrics, 20th International Conference on Machine Learning, pp.202-209, 2003.

J. Van-zyl and I. Cloete, Heuristic functions for learning fuzzy conjunctive rules Man and Cybernetics, The Hague, The Netherlands, IEEE International Conference on Systems, pp.2332-2337, 2004.

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1995.

G. Pagallo and D. Haussler, Boolean feature discovery in empirical learning, Machine Learning, pp.71-99, 1990.

S. Weiss and N. Indurkhya, Reduced complexity rule induction, 12th International Joint Conference on Artificial Intelligence, pp.678-684, 1991.

J. Cendrowska, PRISM: An algorithm for inducing modular rules, International Journal of Man-Machine Studies, vol.27, issue.4, pp.349-370, 1987.
DOI : 10.1016/S0020-7373(87)80003-2

URL : http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1987-Cendrowska-IJMMS.pdf

P. Clark and T. Niblett, The CN2 induction algorithm, Machine Learning, pp.261-284, 1989.
DOI : 10.1007/BF00116835

J. R. Quinlan, Learning logical definitions from relations, Machine Learning, vol.2, issue.3, pp.239-266, 1990.
DOI : 10.1016/B978-1-55860-036-2.50037-0

URL : https://link.springer.com/content/pdf/10.1007%2FBF00117105.pdf

J. Fürnkranz and G. Widmer, Incremental Reduced Error Pruning, 11th International Conference on Machine Learning, pp.70-77, 1994.
DOI : 10.1016/B978-1-55860-335-6.50017-9

B. Cestnik, Estimating probabilities: A crucial task in machine learning, 3rd European Conference on Artificial Intelligence, pp.147-149, 1990.

C. L. Blake and C. J. Merz, UCI Repository of Machine Learning Databases

B. Efron and R. Tibshirani, An Introduction to the Bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9