R. Picard, Affective Computing for HCI, International Conference on Human- Computer Interaction Munich Germany Lawrence Erlbaum Associates Inc, pp.829-833, 1999.

F. Wallhoff, Facial expressions and emotion database, 2005.

F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and B. Weiss, A Database of German Emotional Speech, Proceedings of lnterspeech, pp.1517-1520, 2005.

S. Koelstra, DEAP: A Database for Emotion Analysis ;Using Physiological Signals, IEEE Transactions on Affective Computing, pp.18-31, 2012.
DOI : 10.1109/T-AFFC.2011.15

URL : https://infoscience.epfl.ch/record/165467/files/28_koelstra_ieeetac12.pdf

M. Chen, J. Han, L. Guo, J. Wang, and I. Patras, Identifying valence and arousal levels via connectivity between EEG channels, 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp.63-69, 2015.
DOI : 10.1109/ACII.2015.7344552

S. Wu, X. Xu, L. Shu, and B. Hu, Estimation of valence of emotion using two frontal EEG channels, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.1127-1130, 2017.
DOI : 10.1109/BIBM.2017.8217815

R. Subramanian, J. Wache-;-m, . Abadi-;-r, ;. S. Vieriu, . Winkler-;-n et al., ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors, IEEE Transactions on Affective Computing, pp.1-1, 2016.
DOI : 10.1109/TAFFC.2016.2625250

J. , A. Miranda-correa, M. Khomami-abadi, N. Sebe, and I. Patras, AMIGOS: A Dataset for Mood, Personality and Affect Research on Individuals and Groups, pp.ArXiv e-prints, 2017.

T. Chen and C. Guestrin, XGBoost, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp.785-794, 2016.
DOI : 10.1109/SSDBM.2007.27

URL : http://dl.acm.org/ft_gateway.cfm?id=2939785&type=pdf

J. Kim and E. Andr, Emotion recognition based on physiological changes in music listening, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.12, pp.2067-2083, 2008.
DOI : 10.1109/TPAMI.2008.26

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, pp.903-995, 1971.
DOI : 10.1098/rspa.1998.0193

F. Song, D. Mei, and H. L. , Feature Selection Based on Linear Discriminant Analysis, 2010 International Conference on Intelligent System Design and Engineering Application, 2010.
DOI : 10.1109/ISDEA.2010.311

. Int-'l and . Conf, , pp.746-749, 2010.

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2000.
DOI : 10.1017/CBO9780511801389

J. Luts, F. Ojeda, R. Van-de-plas-raf, B. De-moor, S. Van-huffel et al., A tutorial on support vector machine-based methods for classification problems in chemometrics, Analytica Chimica Acta, vol.665, issue.2, 2010.
DOI : 10.1016/j.aca.2010.03.030

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, pp.389-422, 2002.

S. Wu, C. Wu, S. Lin, K. Lee, and C. K. Peng, Analysis of complex time series using refined composite multiscale entropy, Physics Letters A, vol.378, issue.20, pp.378-1369, 2014.
DOI : 10.1016/j.physleta.2014.03.034

M. Costa, A. L. Goldberger, and C. K. Peng, Multiscale entropy analysis of biological signals, Physical Review E, vol.283, issue.2, pp.1-17, 2005.
DOI : 10.1103/PhysRevE.54.1779

P. H. Tsai, C. Lin, and J. Tsao, Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease, Journal of Neuroscience Methods, vol.210, issue.2, pp.230-237, 2012.
DOI : 10.1016/j.jneumeth.2012.07.002

W. A. Wallis and G. H. Moore, A Significance Test for Time Series Analysis, Journal of the American Statistical Association, vol.36, issue.215, pp.401-409, 1946.
DOI : 10.1080/01621459.1941.10500577

S. Dash, E. Raeder, S. Merchant, and K. Chon, A statistical approach for accurate detection of atrial fibrillation and flutter, Proc, Annual Computers in Cardiology Conference (CinC), pp.137-140, 2009.
DOI : 10.1016/j.jelectrocard.2010.12.024

J. Friedman, machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2001.
DOI : 10.1214/aos/1013203451

C. Adam-bourdarios, G. Cowan, C. Germain-renaud, I. Guyon, B. Kégl et al., The Higgs Machine Learning Challenge, Journal of Physics: Conference Series, vol.664, issue.7, 2015.
DOI : 10.1088/1742-6596/664/7/072015

URL : https://hal.archives-ouvertes.fr/in2p3-01154176

A. E. Phoboo, Machine Learning wins the Higgs Challenge, CERN Bull, 2014.