
HAL Id: hal-01821411
https://inria.hal.science/hal-01821411

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

QBP Notation for Explicit Representation of Properties,
Their Refinement and Their Potential Conflicts:

Application to Interactive Systems
Camille Fayollas, Célia Martinie, Philippe Palanque, Yamine Aït-Ameur

To cite this version:
Camille Fayollas, Célia Martinie, Philippe Palanque, Yamine Aït-Ameur. QBP Notation for Explicit
Representation of Properties, Their Refinement and Their Potential Conflicts: Application to Inter-
active Systems. 16th IFIP Conference on Human-Computer Interaction (INTERACT), Sep 2017,
Bombay, India. pp.91-105, �10.1007/978-3-319-92081-8_9�. �hal-01821411�

https://inria.hal.science/hal-01821411
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

QBP Notation for Explicit Representation of Properties,

their Refinement and their Potential Conflicts:

Application to Interactive Systems

Camille Fayollas, Célia Martinie, Philippe Palanque1, and Yamine Ait-Ameur3,

FORMEDICIS2

1 ICS-IRIT, Université Toulouse III, France
2 Collective name

3 ACADIE-IRIT, ENSEEIHT, France

{fayollas, martinie, palanque, yamine}@irit.fr

Abstract. This paper presents a notation called QBP (Question, Behavior,

Property) to represent software and system properties and their relationship.

The properties are structured in a tree-shape format from very abstract and ge-

neric ones (such as safety or security) to more concrete (leave of the tree). This

tree-shape representation is used in the paper to represent properties classifica-

tion in several areas such as Dependable and Secure computing and Human-

Computer Interaction. The notation makes it possible to connect the properties

among each other and to connect them to concrete properties expressed in tem-

poral logic. Those concrete properties are, in turn, connected to behavioral de-

scriptions of interactive systems satisfying (or not) the properties. An example

is given on a set of different traffic lights from different countries.

Keywords: Properties, interactive systems, safety, security, usability, user ex-

perience.

1 Introduction

With the early work on understanding interactive systems [1] came the identification

of properties that “good” interactive systems should exhibit (e.g. honesty) and “bad”

properties that they should avoid (e.g. deadlocks). Later, guidelines for the design of

interactive systems [22] were provided, identifying in a similar way “good” properties

(e.g. guidance), in order to favor usability of these systems. In the area of software

engineering, early work [7] identified two main good properties of computing systems

namely safety (i.e. nothing bad will ever happen) and liveness (i.e. something good

will eventually happen). In [10] a hierarchy of software properties is proposed identi-

fying for the first time explicit relationships between properties gathered in a hierar-

chy (e.g. “reactivity” divided in “recurrence” and “persistence”). While in the area of

Human-Computer Interaction the properties were initially expressed in an informal

way, [17], [16] proposed the use of temporal logics to describe these properties.

2

Beyond these “generic” properties, it might be of interest to represent specific

properties related to the very nature of each system. These properties might also be of

a high level of abstraction (e.g. trust for a banking system) or of very low level (e.g.

only possible to enter a personal identification number 3 times on a cash machine).

The detailed property would contribute to the high-level one.

2 The QBP Notation

TEAM notation [6,11,13] is an extension of MacLean and al.’s QOC (Question Op-

tion Criteria) [9] that allows the description of available options for a design question

and the selection of an option according to a list of criteria. The TEAM notation ex-

tends QOC to record the information produced during design meetings. For the pur-

pose of work presented here, we propose a refinement of TEAM to explicitly repre-

sent properties and their relations including:

 Questions that have been raised (Square colored in pink in Fig. 1),

 Behavioral representations of a system providing an answer to the related ques-

tion(s) (Disc coloured in orange in Fig. 1),

 Concrete properties (which could be represented in modal logics) describing a

desired property that could be met (or not) by the related behavioral description

(Triangle colored in green in Fig. 1),

 Refined properties and Properties that represent a hierarchy of “generic” proper-

ties that are desired. (Rectangle-triangle colored in blue in right-hand side of

Fig. 1).

QBP models make explicit both the hierarchies of properties (that would be repre-

sented on the right-hand side of the models) and the concrete design of a system (rep-

resented on the left-hand side of the models). .

Fig. 1. Main elements of the notation TEAM forming a QBP model

The software tool DREAM [6,11,13] provides support for the editing, recording

and analysis of QBP diagrams. In previous work, we have proposed an approach for

the selection and management of conflicting guidelines based on the TEAM notation

[6, 11, 13]. More specifically, the notation was used for exhibiting choices and trade-

offs when combining different guidelines sets. Similar modeling and analysis of mod-

els can be performed with QBP.

3

3 Representing Hierarchies of Properties

This section presents the modeling of several classification of properties using QBP.

Some of them are dedicated to interactive systems (see sections 3.1 and 3.3) while

other ones are more generic to computing systems (see section 3.2).

The aim is double: first to highlight the fact that the literature has been already

proposing hierarchies of properties, second to provide a list of properties dedicated to

interactive systems.

3.1 Usability and User Experience

These two major properties in Human-Computer Interaction don’t have currently the

same level of maturity. Usability has been studied since the early 80’s and has been

standardized by ISO in the ISO 9241 part 11 since 1996 [5]. Its structure is presented

on the a) section of Fig. 2. The standard specializes Usability into three sub-properties

(efficiency, effectiveness and satisfaction) while some researchers would also add at

least Learnability and Accessibility [14] as important aspects of Usability.

a) b)

Fig. 2. Representation of the hierarchical relationships between factors and sub-factors of a)

Usability [5] and b) User eXperience [15]

User Experience is a more recent concept that is under standardization but still not

mature. Sub-properties of User Experience (usually called dimensions) are diverse in

terms of level of abstraction and vary widely amongst authors (see [4] for a descrip-

4

tion of user experience in terms of hedonic and ergonomic qualities – another word

for properties). [15] proposes the only set of dimensions that has been carefully check

for orthogonality and proposes six dimensions at the same level of abstraction (see

right-hand side b) section of Fig. 2)

3.2 Dependable and Secure Computing and Concurrent Programs Properties

The first issue of the IEEE transactions on Dependable and secure computing in-

cluded a paper [8] dedicated to a taxonomy of properties of those systems. The taxon-

omy is presented in part a) of Fig. 3. Beyond a very clear definition of each property

this classification shows that some sub-properties such as availability are related to

higher-level properties namely safety and security. Indeed, a loss of availability might

impact dependability of the systems (if the service not available is requested) while

security attacks might target at a reduction of availability of service (as in the classical

DDoS – Distributed Denial of Service).

The right-hand side of Fig. 3 presents a very old and classical decomposition of

properties of concurrent systems: safety and liveness that have been introduced in the

introduction. Beyond this separation, Sistla proposed in [20] a refinement of these

properties in more precise ones contributing to the presence or the absence of the

more high-level ones.

a) b)

Fig. 3. Representation of hierarchical relationships between factors and sub-factors of Security

and Dependability [8] (a) as well as of concurrent programs [16, 17]

5

Fig. 4. Representation of hierarchical relationships between factors and sub-factors of Internal

properties of user interfaces [2]

3.3 Internal and External Properties of Interactive Systems

In his seminal work in the domain of formal methods for interactive systems [1], Dix

proposed a detailed classification of properties in two main groups: external and in-

ternal properties. This refers to the fact that part of the interactive system is perceiva-

ble by the user and that what is presented to the user might be of “good” quality

(which means the presence of the external properties as detailed in Fig. 5). The inter-

nal properties (see Fig. 4) refer to the quality of the interactive system focusing on its

internal behavior. These properties are thus closer to the ones presented above in the

area of computing systems.

6

Fig. 5. Representation of hierarchical relationships between factors and sub-factors of External

properties of user interfaces [3]

7

4 The Traffic Lights Case Study

This section presents the application of QBP notation on a simple interactive sys-

tem. The system has been chosen as it is both simple and widely known so being easi-

ly understandable by the reader. It can also serve as a benchmark for other research

work on properties descriptions.

4.1 Informal Description of the Case Study

Our case study is an application simulating a traffic light. This application, displayed

in Fig. 6, is made up of three light bulbs (the top one is red (see Fig. 6.b), the middle

one is orange (see Fig. 6.c) and the bottom one is green (see Fig. 6.d)). The traffic

light exhibits three different modes of operation: i) when it is stopped, ii) when it is

working and iii) when it is faulty. In the stopped mode, all the light bulb are switched

off (see Fig. 6.a). In the faulty mode, the orange light bulb is blinking (it is switched

off during 400 ms and switched on during 600 ms). Finally, the working mode is dif-

ferent following the countries in which it is deployed. We will further details this

working mode in the following section for four difference traffic lights: French, Brit-

ish and the Austrian traffic light (for which two different alternatives will be provid-

ed).

Fig. 6. Screenshots of the traffic light application: a) when it is stopped, b) when the red light

bulb is switched on, c) when the orange light bulb is switched on and d) when the green light

bulb is switched on.

4.2 Behavioral modelling of the Case Study

This section presents successively the four behavioral models for each of the traffic

lights in the case study.

French Traffic light.

Informal Presentation.

The French traffic light is the simpler one and the other ones are more complex and

precise behavior of the French one. When entering the working mode, the traffic light

starts with only the red light on, after 1000 ms the red lightbulb is switched off and

8

the green lightbulb is switched on. This bulb remains on for 2000ms before being

switched off while the orange light is switched on for 500ms. When this delay is

elapsed, the traffic light comes back to the initial state with only the red light on.

At any time, a fault event may occur that will set the traffic light to the faulty

mode. When entering this mode whatever light which is on is switched off and the

orange light is switched on for 600 ms (as explained in the informal presentation of

the case study above). At any time, a recover event may be triggered setting the traffic

light to the initial state of the working mode (i.e. only the red light switched on). A

fail event may also occur. When this occurs, whatever state the traffic light is in, it is

set to the Fail mode (represented by the state A in Fig. 7).

Behavioral model.

Fig. 7 represents with an Augmented Transition Network [24] the behavior de-

scribed informally above. In the initial state, the traffic light is in the Fail mode (state

A in the diagram). When an event Start is received, the traffic light changes state to

the R state in the diagram. During this state change, the red lightbulb is switched on

(“r” action on the arc label from state “A” to state “R”). From that initial state of the

working mode, the timer “tR” will be switched on starting the autonomous behavior

of the traffic light in this mode, alternating from Red to Green, from Green to Orange

and then back to Red.

A

G

O

R

Ooff

OontR
g

tO
r

tG
o

tOon
oOff

Fault
oOn

/
a

Fail
a Recover

rStart
r

tOoff
oOn

Fault
oOn

Fault
oOn Recover

r

Fail
a

Fail
a

Fail
a

Fail
a

Action
name

Corresponding
actions

a
Red OFF
Orange OFF
Green OFF

r
Red ON
Orange OFF
Green OFF

o
Red OFF
Orange ON
Green OFF

g
Red OFF
Orange OFF
Green ON

oOn
Red OFF
Orange ON
Green OFF

oOff
Red OFF
Orange OFF
Green OFF

Fig. 7. Automaton of the French traffic light

British Traffic light.

Informal Presentation.

Informally, the behavior of the British traffic light is very similar to the French

one. The only difference is the fact that, in the working mode, the traffic light does

not go directly from Red to Green. An intermediate state has both orange and red

lights on before the green lightbulb is switched on. The rest of the behavior (fail and

fault modes) remains the same. This behavior makes possible to users to know that

the traffic light is going to be green (when both orange and red lights are on).

9

Behavioral model.

Fig. 8 presents the behavior of the British traffic light. As explained above the only

difference is the addition of a stated “RO” between “R” and “G” states (at the center

of the Figure).

A

G

O

R

Ooff

Oon

tRO
g

tO
r

tG
o

tOon
oOff

Fault
oOn

/
a

Fail
a Recover

rStart
r

tOoff
oOn

Fault
oOn

Fault
oOn Recover

r

Fail
a

Fail
a

Fail
a

Fail
a

Action
name

Corresponding
actions

a
Red OFF
Orange OFF
Green OFF

r
Red ON
Orange OFF
Green OFF

ro
Red ON
Orange ON
Green OFF

o
Red OFF
Orange ON
Green OFF

g
Red OFF
Orange OFF
Green ON

oOn
Red OFF
Orange ON
Green OFF

oOff
Red OFF
Orange OFF
Green OFF

RO

tR
ro

Fig. 8. Automaton of the British traffic light

Austrian Traffic light.

A

G

O

R

Ooff

Oon

tRO
g, n=0

tO
r, n=0

tGoff/n>=4
o, n=0

tOon
oOff, n=0

/
a, n=0

Start
r, n=0

tOoff
oOn, n=0

Fault
oOn, n=0

Recover
r, n=0

Fail
a, n=0

Action
name

Corresponding
actions

a
Red OFF
Orange OFF
Green OFF

r
Red ON
Orange OFF
Green OFF

ro
Red ON
Orange ON
Green OFF

o
Red OFF
Orange ON
Green OFF

g
Red OFF
Orange OFF
Green ON

gOff
Red OFF
Orange OFF
Green OFF

gOn
Red OFF
Orange OFF
Green ON

oOn
Red OFF
Orange ON
Green OFF

oOff
Red OFF
Orange OFF
Green OFF

RO

tR
ro, n=0

tG
gOff, n=0

tGon
gOff, n=n

Gon

Goff
tGoff/n<4
gOn, n++

Fault
oOn, n=0

Fault
oOn, n=0

Fault
oOn, n=0

Fault
oOn, n=0

Recover
r, n=0

Fail
a, n=0

Fail
a, n=0

Fail
a, n=0

Fail
a, n=0

Fail
a, n=0

Fail
a, n=0

Fig. 9. Automaton of the Austrian traffic light

Informal Presentation.

Informally, the Austrian traffic is an extension of the British traffic light. The only

difference is when the green light is on. In that state, the Austrian traffic light will

present a blinking green status. The green light will blink 4 times before the green

light goes definitively off and the orange light is switched on. This allows users to

10

know that the green light will finish soon and that it is thus better to start to break (or

to accelerate in order to avoid being stuck at the red light).

Behavioral model simple.

The model in Fig. 9 presents one possible description of the behavior presented

above. The “G” state in previous models is now a set of three states, the original “G”

state plus a set of two states “Goff” and “Gon” modelling the blinking in green light.

A timer will alternatively set the automata from state “Goff” to “Gon” until this has

been performed the adequate number of time. The number of blinking is stored in the

variable (called register in ATNs) n that increases each time the green light is

switched on (label n++). When this has been performed 4 times (precondition n>=4

on the label from state “Goff” to “O”, the orange light is switched on and the traffic

light goes to the state “O”.

What is interesting with this model is that it is very easy to increase or decrease the

number of times the traffic light will blink green. Indeed, only the values of the two

preconditions for the event TGoff have to be changed. Replacing the value 4 by a

value 6 would make the traffic light blink six times in the Green blinking mode.

Behavioral model revised.

A revised version of the model above model is presented in Fig. 10. It exhibits the

same behavior but does not include a precondition to count the number of blinking.

Instead these blinking states are unfolded in a number of sequencial Goff and Gon

states.

A

G

O

R

Ooff

Oon

tRO
g

tO
r

t9
o

tOon
oOff

Fault
oOn

/
a

Fail
a Recover

rStart
r

tOoff
oOn

Fault
oOn

Fault
oOn

Recover
r

Fail
a

Fail
a

Fail
a

Fail
a

Action
name

Corresponding
actions

a
Red OFF
Orange OFF
Green OFF

r
Red ON
Orange OFF
Green OFF

ro
Red ON
Orange ON
Green OFF

o
Red OFF
Orange ON
Green OFF

g
Red OFF
Orange OFF
Green ON

gOff
Red OFF
Orange OFF
Green OFF

gOn
Red OFF
Orange OFF
Green ON

oOn
Red OFF
Orange ON
Green OFF

oOff
Red OFF
Orange OFF
Green OFF

RO

tR
ro

Gon3Goff5tG
gOff

Goff3

t7
gOn

Gon2Goff2Gon1Goff1

Gon4 Goff4
t8

gOff
t5

gOn

t3
gOn

t1
gOn

t2
gOff

t6
gOff

t4
gOff

Fig. 10. Automaton of the Austrian traffic light revised

He main advantage of this model is that it is very easy change the blinking speed (for

instance if we want to represent a faster blinking when the traffic light get closer to

state change with orange lightbulb on. However, adding more blinking will deeply

change the automata (adding 2 states and 2 timers for each additional blinking.

11

4.3 Description of properties on the French traffic light

Fig. 11 connects the relevant properties from the literature that have been presented in

section 3 with the French traffic light from the case study. A set of 8 concrete proper-

ties have been represented that are, in turn, connected to higher-level properties.

Fig. 11. DREAM diagram for the design options of the traffic light (focus on the relationships

between first option and criteria)

The concrete properties are (from top to bottom):

- Blinking time easy to modify

- Blinking number easy to modify

- One display per state

- Determinism

- Light mutual exclusion

- Always at least one light on

- Reinitializability

- No end state

12

As the French traffic light has no green blinking state, it is not easy to modify the

number of blinking nor the speed of blinking. This is why the relationship between

the behavior of the French traffic light and these properties is a dashed line (meaning

that the property is not true with this model). These dashed and bold lines were previ-

ously used in QOC [9] to represent the fact that a given option (orange circle) favors a

given criteria.

Fig. 12. DREAM diagram for the design options of the traffic light

The property “One display per state” is true (bold line) as or each state in the mod-

el; there is either a switching light on or a switching light off when entering the state.

4.4 Description of properties for the entire case study

Fig. 12 presents a summary of the properties that are true or false for the four behav-

ioral model of traffic light presented above. It is interesting to note that the Austrian

traffic light holds more properties than the other ones. This is because this traffic light

13

has more perceivable states (with different lights on and off) than the other ones and

to the fact that the first two properties are only meaningful for Austrian traffic lights.

Accessibility is another property that can be related to the case study. Indeed, the

fact that the lights are located on 3 different locations (top, middle and bottom) it

allows color-blind people to understand the current status of the traffic light. Another

design with 3 lights (of different colors) in the same slot would result in a traffic light

with accessibility problems.

5 Discussions and Conclusion

This paper has presented a notation allows representing the hierarchical relationship

between properties for computing systems in general but also adapted for interactive

systems. This notation has been applied to exiting classifications of properties availa-

ble in the literature of these domains.

We have used a set of behavioral models from a simple case study to connect an

application to this hierarchy of properties. The notation can thus be used for compar-

ing design alternatives as this has been demonstrated on the alternative traffic lights

that are deployed in real life.

Further work will be devoted to a deeper understanding and representation of the

various types of relationships that could connect two properties. For instance, the

notion of inclusion could be represented as well as other more complex ones such as

composition or inheritance.

6 References

1. Alan J. Dix: Abstract, Generic Models of Interactive Systems. BCS HCI 1988, 63-77

(1988).

2. Gram, C. and Cockton, G. (eds): Internal Properties: The Software Developer’s Perspec-

tive. In Design Principles for Interactive Software, pp. 53-89, Springer US (1996).

3. Gram, C. and Cockton, G. (eds.): External Properties: the User’s Perspective. In Design

Principles for Interactive Software, pp. 25-51, Springer US (1996).

4. Hassenzahl M., Platz A., Burmester M., Lehner K. Hedonic and ergonomic quality aspects

determine a software's appeal. CHI 2000: 201-208

5. International Standard Organization: “ISO 9241-11.” Ergonomic requirements for office

work with visual display terminals (VDT) – Part 11 Guidance on Usability (1996).

6. Lacaze X., Palanque P., Barboni E., Bastide R., Navarre D.: From DREAM to Realitiy:

Specificities of Interactive Systems Development with respect to Rationale Management.

In: Rationale Management in Software Engineering. Allen H. Dutoit, Raymond McCall,

Ivan Mistrik, Barbara Paech (Eds.), Springer Verlag, Springer-Verlag/Computer Science

Editorial, p. 155-172 (2006)

7. Lamport, L.: Proving the correctness of multiprocess programs. IEEE transactions on

software engineering (2), 125-143 (1977).

8. Laprie, J. and Randell, B. 2004. Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (Jan. 2004), 11-33

http://dblp.uni-trier.de/pers/hc/p/Platz:Axel
http://dblp.uni-trier.de/pers/hc/b/Burmester:Michael
http://dblp.uni-trier.de/pers/hc/l/Lehner:Katrin
http://dblp.uni-trier.de/db/conf/chi/chi2000.html#HassenzahlPBL00

14

9. MacLean, A., Young, R. M., Bellotti, V. M. E. and Moran, T. P.: Questions, Options, and

Criteria: Elements of Design Space Analysis. Lawrence Erlbaum Associates, 6, pp. 201-

250 (1991).

10. Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties. ACM Symposium on Princi-

ples of Distributed Computing1990: 377-410 (1990).

11. Martinie, C., Palanque, P., Winckler, M., Conversy, S. DREAMER: a Design Rationale

Environment for Argumentation, Modeling and Engineering Requirements. In proceedings

of the 28th ACM International Conference on Design of Communication (SIGDOC'2010),

September 26-29, 2010, São Carlos, Brazil. ACM Press. pp. 73-80.

12. Masip, L., Martinie, C., Winckler, M., Palanque, P., Granollers, T. and Oliva, M.: A de-

sign process for exhibiting design choices and trade-offs in (potentially) conflicting user

interface guidelines. In: Proc. of the 4th international conference on Human-Centered

Software Engineering (HCSE'12). Springer-Verlag, Berlin, Heidelberg, 53-71 (2012).

13. Palanque P. & Lacaze X. DREAM-TEAM: A Tool and a Notation Supporting Exploration

of Options and Traceability of Choices for Safety Critical Interactive Systems. In Proceed-

ings of INTERACT 2007, Lecture Notes in Computer Science 4662, p. 234-250 Springer

Verlag.

14. Petrie H. and Kheir O.: The relationship between accessibility and usability of websites.

In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI '07). ACM, New York, NY, USA, 397-406 (2007).

15. Pirker, M. and Bernhaupt, R.: Measuring user experience in the living room: results from

an ethnographically oriented field study indicating major evaluation factors. EuroITV

2011, 79-82 (2011).

16. Pnueli A.: Applications of Temporal Logic to the Specification and Verification of Reac-

tive Systems: A Survey of Current Trends. LNCS n° 224 p.510-584. Springer Verlag

(1986).

17. Pnueli, A.: The Temporal Logic of Programs. 18th IEEE symposium on the Foundations

of Computer Science, 46-57 (1977)

18. Sasse M. A., Karat C.-M., and Maxion R.: Designing and evaluating usable security and

privacy technology. In: Proceedings of the 5th Symposium on Usable Privacy and Security

(SOUPS '09). ACM, New York, NY, USA, Article 16, 1 page (2009).

19. Section 508: The Road to Accessibility. Available at: http://www.section508.gov/

20. Sistla, A. P.: On characterization of safety and liveness properties in temporal logic. In:

Proceedings of the fourth annual ACM symposium on Principles of distributed computing,

pp. 39-48, ACM (1985).

21. Toulmin, S.E. (1958) The Uses of Argument. Cambridge: Cambridge University Press.

22. Vanderdonckt, J.: Development milestones towards a tool for working with guidelines. In-

teracting with Computers 12(2), 81-118 (1999).

23. Whitacre JM, Bender A.: Degeneracy: a design principle for achieving robustness and

evolvability. Journal of Theoretical Biology 263(1), 143-153 (2010).

24. Wood W.A. Transition network grammars for natural language analysis. Communications

of the ACM 13, 10 (October 1970), 591-606

25. Yan J. and El Ahmad A. S.: Usability of CAPTCHAs or usability issues in CAPTCHA de-

sign. In Proceedings of the 4th symposium on Usable privacy and security (SOUPS '08).

ACM, New York, NY, USA, 44-52 (2008).

http://www.section508.gov/

