R. Fanciullino, J. Ciccolini, and G. Milano, Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs, Critical Reviews in Oncology/Hematology, vol.88, issue.3, pp.504-513, 2013.
DOI : 10.1016/j.critrevonc.2013.06.010

R. Schell, B. Sidone, and W. Caron, Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.1, 2014.
DOI : 10.1016/j.nano.2013.07.005

R. Mathijssen, A. Sparreboom, and J. Verweij, Determining the optimal dose in the development of anticancer agents, Nature Reviews Clinical Oncology, vol.30, issue.5, pp.272-281, 2014.
DOI : 10.1634/theoncologist.12-8-913

M. Etheridge, S. Campbell, A. Erdman, C. Haynes, S. Wolf et al., The big picture on small medicine: the state of nanomedicine products approved for use in clinical trials, Nanomedicine Nanotechnol Biol Med. 2013, vol.9, issue.1, pp.1-14

S. Ait-oudhia, D. Mager, and R. Straubinger, Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology, Pharmaceutics, vol.10, issue.1, pp.137-174, 2014.
DOI : 10.1016/S0074-7696(08)62148-8

W. Zamboni, Liposomal, Nanoparticle, and Conjugated Formulations of Anticancer Agents, Clinical Cancer Research, vol.11, issue.23, pp.8230-8234, 2005.
DOI : 10.1158/1078-0432.CCR-05-1895

URL : http://clincancerres.aacrjournals.org/content/clincanres/11/23/8230.full.pdf

A. Gabizon, R. Shiota, and D. Papahadjopoulos, Pharmacokinetics and Tissue Distribution of Doxorubicin Encapsulated in Stable Liposomes With Long Circulation Times, JNCI Journal of the National Cancer Institute, vol.81, issue.19, pp.1484-1488, 1989.
DOI : 10.1093/jnci/81.19.1484

T. Allen, C. Hansen, R. Catane, and B. Uziely, Pharmacokinetics of stealth versus conventional liposomes: effect of dose, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1068, issue.2, pp.133-141, 1991.
DOI : 10.1016/0005-2736(91)90201-I

H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Advances in Enzyme Regulation, vol.41, issue.1, pp.189-207, 2001.
DOI : 10.1016/S0065-2571(00)00013-3

R. Sawant and V. Torchilin, Challenges in Development of Targeted Liposomal Therapeutics, The AAPS Journal, vol.14, issue.2, pp.303-315, 2012.
DOI : 10.1208/s12248-012-9330-0

URL : http://europepmc.org/articles/pmc3326155?pdf=render

H. Kobayashi, R. Watanabe, and P. Choyke, Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target?, Theranostics, vol.4, issue.1, pp.81-89, 2013.
DOI : 10.7150/thno.7193

URL : http://www.thno.org/v04p0081.pdf

T. Lammers, V. Subr, and P. Peschke, Image-guided and passively tumourtargeted polymeric nanomedicines for radiochemotherapy, Br J Cancer, vol.99, 2008.
DOI : 10.1038/sj.bjc.6604561

URL : http://www.nature.com/bjc/journal/v99/n6/pdf/6604561a.pdf

Y. Nakamura, A. Mochida, P. Choyke, and H. Kobayashi, Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?, Bioconjugate Chemistry, vol.27, issue.10, 2016.
DOI : 10.1021/acs.bioconjchem.6b00437

J. Xu, F. Gattacceca, and M. Amiji, Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice, Molecular Pharmaceutics, vol.10, issue.5, pp.2031-2044, 2013.
DOI : 10.1021/mp400054e

URL : http://europepmc.org/articles/pmc3651790?pdf=render

P. Deshpande, S. Biswas, and V. Torchilin, Current trends in the use of liposomes for tumor targeting, Nanomedicine, vol.25, issue.9, 2013.
DOI : 10.1517/17425247.2010.538678

A. Lowery, H. Onishko, D. Hallahan, and Z. Han, Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors, Journal of Controlled Release, vol.150, issue.1, pp.117-124, 2011.
DOI : 10.1016/j.jconrel.2010.11.006

N. Desai, V. Trieu, and Z. Yao, Increased Antitumor Activity, Intratumor Paclitaxel Concentrations, and Endothelial Cell Transport of Cremophor-Free, Albumin-Bound Paclitaxel, ABI-007, Compared with Cremophor-Based Paclitaxel, Clinical Cancer Research, vol.12, issue.4, pp.1317-1324, 2006.
DOI : 10.1158/1078-0432.CCR-05-1634

URL : http://clincancerres.aacrjournals.org/content/clincanres/12/4/1317.full.pdf

L. Wang, M. Li, and N. Zhang, Folate-targeted docetaxel-lipid-basednanosuspensions for active-targeted cancer therapy, Int J Nanomedicine, vol.7, pp.3281-3294, 2012.

A. Nagayasu, K. Uchiyama, and H. Kiwada, The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs, Advanced Drug Delivery Reviews, vol.40, issue.1-2, pp.75-87, 1999.
DOI : 10.1016/S0169-409X(99)00041-1

D. Liu, A. Mori, and L. Huang, Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1104, issue.1, pp.95-101, 1992.
DOI : 10.1016/0005-2736(92)90136-A

H. Choi, W. Liu, and P. Misra, Renal clearance of quantum dots, Nature Biotechnology, vol.361, issue.10, pp.1165-1170, 1340.
DOI : 10.1152/ajprenal.00316.2002

R. Fanciullino, S. Mollard, and F. Correard, Biodistribution, Tumor Uptake and Efficacy of 5-FU-Loaded Liposomes: Why Size Matters, Pharmaceutical Research, vol.88, issue.3, pp.2677-2684, 2014.
DOI : 10.1016/j.critrevonc.2013.06.010

URL : https://hal.archives-ouvertes.fr/hal-01773009

G. Charrois and T. Allen, Rate of biodistribution of STEALTH?? liposomes to tumor and skin: influence of liposome diameter and implications for toxicity and therapeutic activity, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1609, issue.1, pp.102-108, 2003.
DOI : 10.1016/S0005-2736(02)00661-2

L. Mayer, L. Tai, and D. Ko, Influence of Vesicle Size, Lipid Composition, and Drug-to-Lipid Ratio on the Biological Activity of Liposomal Doxorubicin in Mice, Cancer Res, vol.49, pp.5922-5930, 1989.

J. Senior and G. Gregoriadis, Stability of small unilamellar liposomes in serum and clearance from the circulation: The effect of the phospholipid and cholesterol components, Life Sciences, vol.30, issue.24, pp.2123-2136, 1982.
DOI : 10.1016/0024-3205(82)90455-6

M. Briuglia, C. Rotella, A. Mcfarlane, and D. Lamprou, Influence of cholesterol on liposome stability and on in vitro drug release, Drug Delivery and Translational Research, vol.135, issue.3, pp.231-242, 2015.
DOI : 10.1063/1.3615937

S. Geng, Y. B. Wang, and G. , Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina, Nanotechnology, vol.25, issue.27, pp.957-4484, 2014.
DOI : 10.1088/0957-4484/25/27/275103

A. Gabizon and D. Papahadjopoulos, The role of surface charge and hydrophilic groups on liposome clearance in vivo, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1103, issue.1, pp.94-100, 1992.
DOI : 10.1016/0005-2736(92)90061-P

T. Levchenko, R. Rammohan, and A. Lukyanov, Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating, International Journal of Pharmaceutics, vol.240, issue.1-2, pp.95-102, 2002.
DOI : 10.1016/S0378-5173(02)00129-1

J. Zhang, Y. Chen, and X. Li, The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate, Int J Nanomedicine, vol.11, pp.4187-4197, 2016.

R. Campbell, D. Fukumura, and E. Brown, Cationic Charge Determines the Distribution of Liposomes between the Vascular and Extravascular Compartments of Tumors, Cancer Res, vol.62, pp.6831-6836, 2002.

Y. Li, J. Wang, and Y. Gao, Relationships between Liposome Properties, Cell Membrane Binding, Intracellular Processing, and Intracellular Bioavailability, The AAPS Journal, vol.13, issue.4, pp.585-597, 2011.
DOI : 10.1208/s12248-011-9298-1

N. Truong, M. Whittaker, C. Mak, and T. Davis, The importance of nanoparticle shape in cancer drug delivery, Expert Opinion on Drug Delivery, vol.4, issue.2, pp.129-142, 2014.
DOI : 10.1021/ar300015b

R. Toy, P. Peiris, K. Ghaghada, and E. Karathanasis, journey of nanoparticles, Nanomedicine, vol.2535, issue.1, pp.121-134, 2014.
DOI : 10.1021/nl073154m

J. Champion and S. Mitragotri, Role of target geometry in phagocytosis, Proceedings of the National Academy of Sciences, vol.298, issue.2, pp.4930-4934, 2006.
DOI : 10.1016/j.ijpharm.2005.03.035

S. Barua, J. Yoo, and P. Kolhar, Particle shape enhances specificity of antibody-displaying nanoparticles, Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.3270-3275, 2013.
DOI : 10.1073/pnas.0705326104

V. Colapicchioni, M. Tilio, and L. Digiacomo, Personalized liposome???protein corona in the blood of breast, gastric and pancreatic cancer patients, The International Journal of Biochemistry & Cell Biology, vol.75, pp.180-187, 2016.
DOI : 10.1016/j.biocel.2015.09.002

A. Salvati, A. Pitek, and M. Monopoli, Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface, Nature Nanotechnology, vol.100, issue.2, pp.137-143, 2013.
DOI : 10.1073/pnas.2232479100

C. Corbo, R. Molinaro, and F. Taraballi, Effects of the protein corona on liposome?liposome and liposome?cell interactions, Int J Nanomedicine, vol.11, pp.3049-3063, 2016.

G. Charrois and T. Allen, Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1663, issue.1-2, pp.167-177, 2004.
DOI : 10.1016/j.bbamem.2004.03.006

J. Sullivan, S. Budge, and A. Timmins, Rapid Method for Determination of Residual tert-Butanol in Liposomes Using Solid-Phase Microextraction and Gas Chromatography, Journal of Chromatographic Science, vol.48, issue.4, pp.289-293, 2010.
DOI : 10.1093/chromsci/48.4.289

N. Griese, G. Blaschke, J. Boos, and G. Hempel, Determination of free and liposome-associated daunorubicin and daunorubicinol in plasma by capillary electrophoresis, Journal of Chromatography A, vol.979, issue.1-2, pp.379-388, 2002.
DOI : 10.1016/S0021-9673(02)01440-1

W. Zamboni, A. Gervais, and M. Egorin, Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma, Cancer Chemotherapy and Pharmacology, vol.53, issue.4, pp.329-336, 2003.
DOI : 10.1007/s00280-003-0719-4

A. Lucas, T. White, and A. Deal, Profiling the relationship between tumorassociated macrophages and pharmacokinetics of liposomal agents in preclinical murine models, Nanomedicine Nanotechnol Biol Med

E. Chen, S. Hodge, and K. Tai, Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells, Energy-based Treatment of Tissue and Assessment VII, p.10, 1117.
DOI : 10.1117/12.2008067

S. Hingorani, W. Harris, and T. Seery, Interim results of a randomized phase II study of PEGPH20 added to nab-paclitaxel/gemcitabine in patients with stage IV previously untreated pancreatic cancer., Journal of Clinical Oncology, vol.34, issue.4_suppl, pp.439-439, 2016.
DOI : 10.1200/jco.2016.34.4_suppl.439

L. Bregoli, D. Movia, and J. Gavigan-imedio, Nanomedicine applied to translational oncology: A future perspective on cancer treatment, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.1, pp.81-103, 2016.
DOI : 10.1016/j.nano.2015.08.006

L. Lindner and M. Hossann, Factors affecting drug release from liposomes, Curr Opin Drug Discov Devel, vol.13, pp.111-123, 2010.

J. Plowden, M. Renshaw-hoelscher, and C. Engleman, Innate immunity in aging: impact on macrophage function, Aging Cell, vol.47, issue.4, pp.161-167, 2004.
DOI : 10.1126/science.1094351

M. Gusella, A. Bononi, and Y. Modena, Age affects pegylated liposomal doxorubicin elimination and tolerability in patients over 70??years old, Cancer Chemotherapy and Pharmacology, vol.105, issue.1, pp.517-524, 2014.
DOI : 10.1016/j.jconrel.2005.04.003

H. Wu, J. Infante, and V. Keedy, Factors affecting the pharmacokinetics and pharmacodynamics of PEGylated liposomal irinotecan (IHL-305) in patients with advanced solid tumors, International Journal of Nanomedicine, vol.10, pp.1201-1209, 2015.
DOI : 10.2147/IJN.S62911

N. La-beck, B. Zamboni, and A. Gabizon, Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients, Cancer Chemotherapy and Pharmacology, vol.66, issue.4, pp.43-50, 2011.
DOI : 10.1007/s00280-010-1406-x

R. Harris, L. Benet, and J. Schwartz, Gender Effects in Pharmacokinetics and Pharmacodynamics, Drugs, vol.50, issue.2, pp.222-239, 1995.
DOI : 10.2165/00003495-199550020-00003

N. La-beck, H. Wu, and J. Infante, The evaluation of gender on the pharmacokinetics (PK) of pegylated liposomal anticancer agents., Journal of Clinical Oncology, vol.28, issue.15_suppl, p.13003, 2010.
DOI : 10.1200/jco.2010.28.15_suppl.e13003

E. Briasoulis, V. Karavasilis, and E. Tzamakou, Interaction pharmacokinetics of pegylated liposomal doxorubicin (Caelyx) on coadministration with paclitaxel or docetaxel, Cancer Chemotherapy and Pharmacology, vol.53, issue.5, pp.452-457, 2004.
DOI : 10.1007/s00280-003-0750-5

J. Petschauer, A. Madden, and W. Kirschbrown, The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents, Nanomedicine, vol.27, issue.10, pp.447-463, 2015.
DOI : 10.1007/s00280-007-0525-5

G. Song, J. Petschauer, A. Madden, and W. Zamboni, Nanoparticles and the Mononuclear Phagocyte System: Pharmacokinetics and Applications for Inflammatory Diseases, Current Rheumatology Reviews, vol.10, issue.1, pp.22-34, 2014.
DOI : 10.2174/1573403X10666140914160554

M. Kai, H. Brighton, and C. Fromen, Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance, ACS Nano, vol.10, issue.1, pp.861-870, 2016.
DOI : 10.1021/acsnano.5b05999

I. Marigo, L. Dolcetti, and P. Serafini, Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells, Immunological Reviews, vol.176, issue.1, pp.162-179, 2008.
DOI : 10.4049/jimmunol.176.11.6752

W. Zamboni, L. Maruca, and S. Strychor, Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors, Journal of Liposome Research, vol.13, issue.2, pp.158-165, 2010.
DOI : 10.1158/1078-0432.CCR-07-1035

F. Innocenti, R. Schilsky, and J. Ramírez, Genotype of Patients With Cancer, Journal of Clinical Oncology, vol.32, issue.22, pp.2328-2334, 2014.
DOI : 10.1200/JCO.2014.55.2307

J. Infante, V. Keedy, and S. Jones, Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors, Cancer Chemotherapy and Pharmacology, vol.25, issue.4, pp.699-705, 2012.
DOI : 10.1634/theoncologist.2007-0180

E. Kraut, M. Fishman, and P. Lorusso, Final results of a phase I study of liposome encapsulated SN-38 (LE-SN38): Safety, pharmacogenomics, pharmacokinetics, and tumor response, Journal of Clinical Oncology, vol.23, issue.16_suppl, pp.2017-2017, 2005.
DOI : 10.1200/jco.2005.23.16_suppl.2017

R. Fanciullino, S. Mollard, and S. Giacometti, In Vitro and In Vivo Evaluation of Lipofufol, a New Triple Stealth Liposomal Formulation of Modulated 5-Fu: Impact on Efficacy and Toxicity, Pharmaceutical Research, vol.58, issue.13, pp.1281-1290, 2013.
DOI : 10.1200/JCO.1998.16.1.301

G. Song, O. Suzuki, and C. Santos, Gulp1 is associated with the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) in inbred mouse strains, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.7, 2007.
DOI : 10.1016/j.nano.2016.05.019

Y. Gazit, J. Baish, and N. Safabakhsh, Fractal Characteristics of Tumor Vascular Architecture During Tumor Growth and Regression, Microcirc N Y N, pp.395-402, 1994.
DOI : 10.3109/10739689709146803

R. Jain, Transport of molecules in the tumor interstitium: a review, Cancer Res, vol.47, pp.3039-3051, 1987.

Y. Liu, S. Shah, and J. Tan, Computational Modeling of Nanoparticle Targeted Drug Delivery, Reviews in Nanoscience and Nanotechnology, vol.1, issue.1, pp.66-83, 2012.
DOI : 10.1166/rnn.2012.1014

L. Curtis, C. England, and M. Wu, An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity, Nanomedicine, vol.5, issue.10, pp.197-216, 2016.
DOI : 10.1002/smll.201401943

R. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.58-62, 2005.
DOI : 10.1126/science.1104819

V. Chauhan, T. Stylianopoulos, and J. Martin, Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner, Nature Nanotechnology, vol.46, issue.6, pp.383-388, 2012.
DOI : 10.1083/jcb.200910104

H. Byrne, Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, vol.85, issue.3, pp.221-230, 2010.
DOI : 10.1016/j.ijrobp.2003.09.035

A. Anderson and M. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-899, 1998.
DOI : 10.1006/bulm.1998.0042

A. Stéphanou, A. Lesart, and J. Deverchère, How tumour-induced vascular changes alter angiogenesis: Insights from a computational model, Journal of Theoretical Biology, vol.419, pp.211-226, 2017.
DOI : 10.1016/j.jtbi.2017.02.018

X. Zheng, S. Wise, and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin of Mathematical Biology, vol.67, issue.2, pp.211-259, 2005.
DOI : 10.1016/j.bulm.2004.08.001

J. Sinek, H. Frieboes, X. Zheng, and V. Cristini, Two-Dimensional Chemotherapy Simulations Demonstrate Fundamental Transport and Tumor Response Limitations Involving Nanoparticles, Biomedical Microdevices, vol.6, issue.4, pp.297-309, 2004.
DOI : 10.1023/B:BMMD.0000048562.29657.64

A. Van-de-ven, M. Wu, and J. Lowengrub, Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors, AIP Advances, vol.5, issue.7, 2012.
DOI : 10.1063/1.3699060.1

H. Wu, J. Infante, and V. Keedy, Population pharmacokinetics of PEGylated liposomal CPT-11 (IHL-305) in patients with advanced solid tumors, European Journal of Clinical Pharmacology, vol.6, issue.9, 2013.
DOI : 10.1007/s00280-005-0166-5

, Eur J Clin Pharmacol, vol.69, pp.2073-2081

H. Wu, R. Ramanathan, and B. Zamboni, Population Pharmacokinetics of Pegylated Liposomal CKD-602 (S-CKD602) in Patients With Advanced Malignancies, The Journal of Clinical Pharmacology, vol.25, issue.6, pp.180-194, 2012.
DOI : 10.1007/s10585-008-9191-1

W. Caron, H. Clewell, and R. Dedrick, Allometric scaling of pegylated liposomal anticancer drugs, Journal of Pharmacokinetics and Pharmacodynamics, vol.4, issue.11, p.653, 2011.
DOI : 10.1038/clpt.2009.141

M. Li, K. Jamal, K. Kostarelos, and J. Reineke, Physiologically Based Pharmacokinetic Modeling of Nanoparticles, ACS Nano, vol.4, issue.11, pp.6303-6317, 2010.
DOI : 10.1021/nn1018818

Z. Lin, N. Monteiro-riviere, and J. Riviere, A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice, Nanotoxicology, vol.46, pp.162-172, 2016.
DOI : 10.1093/toxsci/kfp087

Z. Lin, N. Monteiro-riviere, R. Kannan, and J. Riviere, A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles, Nanomedicine, vol.11, issue.2, 2016.
DOI : 10.1038/nnano.2015.111

E. Costa, V. Gaspar, and J. Marques, Evaluation of Nanoparticle Uptake in Co-culture Cancer Models, PLoS ONE, vol.277, issue.7, 2013.
DOI : 10.1371/journal.pone.0070072.s005

F. Perche and V. Torchilin, Cancer cell spheroids as a model to evaluate chemotherapy protocols, Cancer Biology & Therapy, vol.11, issue.12, pp.1205-1213, 2012.
DOI : 10.1158/1535-7163.MCT-06-0698

URL : https://hal.archives-ouvertes.fr/hal-02130815

A. Jyoti, K. Fugit, and P. Sethi, An in vitro assessment of liposomal topotecan simulating metronomic chemotherapy in combination with radiation in tumor-endothelial spheroids, Scientific Reports, vol.1, issue.1, 2015.
DOI : 10.1038/nprot.2006.339

A. Combest, P. Roberts, and P. Dillon, Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors, The Oncologist, vol.17, issue.10, pp.1303-1316, 2012.
DOI : 10.1634/theoncologist.2012-0274