W. Hackbusch, A Sparse Matrix Arithmetic Based on $\Cal H$ -Matrices. Part I: Introduction to ${\Cal H}$ -Matrices, Computing, vol.62, issue.2, pp.89-108, 1999.
DOI : 10.1007/s006070050015

W. Hackbusch and H. Matrices, Algorithms and Analysis, vol.49, 2015.

L. Grasedyck, R. Kriemann, and S. L. Borne, Parallel black box $$\mathcal {H}$$ -LU preconditioning for elliptic boundary value problems, Computing and Visualization in Science, vol.40, issue.1, pp.4-6, 2008.
DOI : 10.1007/s00791-008-0098-9

URL : https://link.springer.com/content/pdf/10.1007%2Fs00791-008-0098-9.pdf

L. Grasedyck, W. Hackbusch, and R. Kriemann, Performance Of H-Lu Preconditioning For Sparse Matrices, Computational methods in applied mathematics, pp.336-349, 2008.
DOI : 10.2478/cmam-2008-0024

R. Kriemann, $${{\fancyscript{H}}} $$ H -LU factorization on many-core systems, Computing and Visualization in Science, vol.35, issue.2, pp.105-117, 2013.
DOI : 10.1145/1365490.1365500

B. Lizé, Résolution directe rapide pour les éléments finis de frontière en électromagnétisme et acoustique : H-matrices. parallélisme et applications industrielles, 2014.

A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with applications to finite-element matrices, Journal of Computational Physics, vol.304, pp.170-188, 2016.
DOI : 10.1016/j.jcp.2015.10.012

URL : https://manuscript.elsevier.com/S0021999115006750/pdf/S0021999115006750.pdf

A. Aminfar and E. Darve, A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to finite-element matrices, International Journal for Numerical Methods in Engineering, vol.1, issue.4, pp.520-540, 2016.
DOI : 10.1002/nla.1680010405

J. N. Chadwick and D. S. Bindel, An Efficient Solver for Sparse Linear Systems Based on Rank-Structured Cholesky Factorization

J. Xia, S. Chandrasekaran, M. Gu, and X. Li, SIAM Journal on Matrix Analysis and Applications, pp.31-1382, 2009.

S. Wang, X. S. Li, F. Rouet, J. Xia, M. V. De et al., A Parallel Geometric Multifrontal Solver Using Hierarchically Semis-Separable Structure, ACM Trans. Math. Softw, vol.42, issue.21, 2016.

P. Ghysels, X. S. Li, F. Rouet, S. Williams, and A. Napov, An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling, SIAM Journal on Scientific Computing, vol.38, issue.5, pp.358-384, 2016.
DOI : 10.1137/15M1010117

P. Ghysels, X. S. Li, C. Gorman, and F. Rouet, A Robust Parallel Preconditioner for Indefinite Systems Using Hierarchical Matrices and Randomized Sampling, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.2017-897, 2017.
DOI : 10.1109/IPDPS.2017.21

W. Hackbusch and S. Börm, Data-sparse Approximation by Adaptive H 2 -Matrices, Computing, vol.69, issue.1, pp.1-35, 2002.
DOI : 10.1007/s00607-002-1450-4

H. Pouransari, P. Coulier, and E. Darve, Fast Hierarchical Solvers For Sparse Matrices Using Extended Sparsification and Low-Rank Approximation, SIAM Journal on Scientific Computing, vol.39, issue.3, pp.797-830, 2017.
DOI : 10.1137/15M1046939

K. Yang, H. Pouransari, and E. Darve, Sparse Hierarchical Solvers with Guaranteed Convergence

K. L. Ho and L. Ying, Hierarchical Interpolative Factorization for Elliptic Operators: Differential Equations, Communications on Pure and Applied Mathematics, vol.34, issue.4, pp.1415-1451, 2016.
DOI : 10.1137/1034116

D. A. Sushnikova and I. V. Oseledets, Compress and eliminate " solver for symmetric positive definite sparse matrices, arXiv preprint

J. Anton, C. Ashcraft, and C. Weisbecker, A Block Low-Rank Multithreaded Factorization for Dense BEM Operators, SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP 2016), 2016.

K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes, Tile Low Rank Cholesky Factorization for Climate/Weather Modeling Applications on Manycore Architectures, pp.22-40
DOI : 10.1007/s10766-016-0441-6

P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. Excellent et al., Improving Multifrontal Methods by Means of Block Low-Rank Representations, SIAM Journal on Scientific Computing, vol.37, issue.3, pp.1451-1474, 2015.
DOI : 10.1137/120903476

URL : https://hal.archives-ouvertes.fr/hal-00776859

T. Mary, Block Low-Rank multifrontal solvers : complexity, performance, and scalability, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01708791

P. Hénon, P. Ramet, and J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Computing, vol.28, issue.2, pp.301-321, 2002.
DOI : 10.1016/S0167-8191(01)00141-7

G. Pichon, E. Darve, M. Faverge, P. Ramet, and J. Roman, Sparse Supernodal Solver Using Block Low-Rank Compression, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017.
DOI : 10.1109/IPDPSW.2017.86

URL : https://hal.archives-ouvertes.fr/hal-01502215

A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM Journal on Numerical Analysis, vol.10, issue.2, pp.345-363, 1973.
DOI : 10.1137/0710032

G. Karypis and V. Kumar, METIS : A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, 1995.

F. Pellegrini, Scotch and libScotch 5.1 User's Guide, user's manual, p.127, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00410332

G. Pichon, M. Faverge, P. Ramet, and J. Roman, Reordering Strategy for Blocking Optimization in Sparse Linear Solvers, SIAM Journal on Matrix Analysis and Applications, vol.38, issue.1, pp.226-248, 2017.
DOI : 10.1137/16M1062454

URL : https://hal.archives-ouvertes.fr/hal-01485507

X. S. Li and J. W. , SuperLU_DIST, ACM Transactions on Mathematical Software, vol.29, issue.2, pp.110-140, 2003.
DOI : 10.1145/779359.779361

L. Giraud and J. Langou, A Robust Criterion for the Modified Gram--Schmidt Algorithm with Selective Reorthogonalization, SIAM Journal on Scientific Computing, vol.25, issue.2, pp.417-441, 2003.
DOI : 10.1137/S106482750340783X

X. Lacoste, Scheduling and memory optimizations for sparse direct solver on multi-core/multi-gpu cluster systems, 2015.

T. A. Davis and Y. Hu, The university of Florida sparse matrix collection, ACM Transactions on Mathematical Software, vol.38, issue.1, pp.1-1, 2011.
DOI : 10.1145/2049662.2049663

URL : http://www.cise.ufl.edu/submit/files/file_298.pdf

E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J. Excellent et al., Robust Memory-Aware Mappings for Parallel Multifrontal Factorizations, SIAM Journal on Scientific Computing, vol.38, issue.3, pp.256-279, 2016.
DOI : 10.1137/130938505

URL : https://hal.archives-ouvertes.fr/hal-00726644

G. W. Howell, J. W. Demmel, C. T. Fulton, S. Hammarling, and K. , Cache efficient bidiagonalization using BLAS 2.5 operators, ACM Transactions on Mathematical Software, vol.34, issue.3, pp.1-1433, 2008.
DOI : 10.1145/1356052.1356055

URL : http://eprints.ma.man.ac.uk/210/01/covered/MIMS_ep2006_56.pdf

P. R. Amestoy, A. Buttari, J. Excellent, and T. Mary, On the Complexity of the Block Low-Rank Multifrontal Factorization, SIAM Journal on Scientific Computing, vol.39, issue.4, pp.1710-1740, 2017.
DOI : 10.1137/16M1077192

URL : https://hal.archives-ouvertes.fr/hal-01322230

G. L. Miller and S. A. , Vavasis, Density graphs and separators, Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp.331-336, 1991.

R. J. Lipton and R. E. Tarjan, A Separator Theorem for Planar Graphs, SIAM Journal on Applied Mathematics, vol.36, issue.2, pp.177-189, 1979.
DOI : 10.1137/0136016

URL : http://historical.ncstrl.org/litesite-data/stan/CS-TR-77-627.pdf

M. Sergent, D. Goudin, S. Thibault, and O. Aumage, Controlling the Memory Subscription of Distributed Applications with a Task-Based Runtime System, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2016.
DOI : 10.1109/IPDPSW.2016.105

URL : https://hal.archives-ouvertes.fr/hal-01284004