, Advanced Micro Devices, Inc. BIOS and kernel developer's guide (BKDG) for AMD family 15h models 30h-3Fh processors, pp.49125-49128, 2015.

, Advanced Micro Devices, Inc. Processor programming reference (ppr) for amd family 17h model 01h, revision b1 processors, 2017.

, Apache Spark Streaming. https://spark.apache.org/streaming

A. Storm,

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, Workload analysis of a largescale key-value store, SIGMETRICS '12, pp.53-64, 2012.

R. Azimi, M. Badiei, X. Zhan, N. Li, and S. Reda, Fast Decentralized Power Capping for Server Clusters, 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2017.
DOI : 10.1109/HPCA.2017.49

A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar, The need for speed and stability in data center power capping, IGCC '12, pp.1-10, 2012.

A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov et al., IBM infosphere streams for scalable, real-time, intelligent transportation services, Proceedings of the 2010 international conference on Management of data, SIGMOD '10, pp.1093-1104, 2010.
DOI : 10.1145/1807167.1807291

V. Cardellini, M. Nardelli, and D. Luzi, Elastic stateful stream processing in storm, 2016 International Conference on High Performance Computing & Simulation (HPCS), pp.583-590, 2016.
DOI : 10.1109/HPCSim.2016.7568388

J. Cerviño, E. Kalyvianaki, J. Salvachúa, and P. R. Pietzuch, Adaptive Provisioning of Stream Processing Systems in the Cloud, 2012 IEEE 28th International Conference on Data Engineering Workshops, pp.295-301, 2012.
DOI : 10.1109/ICDEW.2012.40

T. , D. Matteis, and G. Mencagli, Keep calm and react with foresight: Strategies for low-latency and energy-efficient elastic data stream processing, PPoPP '16, pp.1-1312, 2016.

G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman et al., Dynamo: Amazon's highly available key-value store, SOSP '07, pp.205-220, 2007.

C. Eibel and T. Distler, Towards Energy-Proportional State-Machine Replication, Proceedings of the 14th International Workshop on Adaptive and Reflective Middleware, ARM 2015, pp.19-24, 2015.
DOI : 10.1145/1966445.1966461

C. Eibel, T. Do, R. Meißner, and T. Distler, Empya: Saving Energy in the Face of Varying Workloads, 2018 IEEE International Conference on Cloud Engineering (IC2E), 2018.
DOI : 10.1109/IC2E.2018.00036

H. Esmaeilzadeh, E. R. Blem, R. St, K. Amant, D. Sankaralingam et al., Dark silicon and the end of multicore scaling, ISCA '11, pp.365-376

A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy, Dhalion, Proc. of the VLDB Endowment, pp.1825-1836, 2017.
DOI : 10.14778/3137765.3137786

V. Gulisano, R. Jimã?nez-peris, M. Patiã?o-martã?nez, C. Soriente, and P. Valduriez, Stream- Cloud: An elastic and scalable data streaming system, TPDS, vol.23, issue.12, pp.2351-2365, 2012.

T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak et al., Online parameter optimization for elastic data stream processing, Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC '15, pp.276-287, 2015.
DOI : 10.1145/781027.781052

M. Horowitz, T. Indermaur, and R. Gonzalez, Low-power digital design, Proceedings of 1994 IEEE Symposium on Low Power Electronics, pp.8-11, 1994.
DOI : 10.1109/LPE.1994.573184

, Intel Corporation Intel 64 and IA-32 architectures software developer's manual, ): System programming guide, 2015.

A. P. Iyer, L. E. Li, T. Das, and I. Stoica, Time-evolving graph processing at scale, Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems, GRADES '16, pp.1-5
DOI : 10.1145/2517349.2522737

S. J. Kazemitabar, F. Banaei-kashani, and D. Mcleod, Geostreaming in cloud, Proceedings of the 2nd ACM SIGSPATIAL International Workshop on GeoStreaming, IWGS '11, pp.3-9, 2011.
DOI : 10.1145/2064959.2064962

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg et al., Twitter Heron, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD '15, pp.239-250, 2015.
DOI : 10.1145/2588555.2595641

J. Li, C. Pu, Y. Chen, D. Gmach, and D. Milojicic, Enabling Elastic Stream Processing in Shared Clusters, 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), pp.108-115, 2016.
DOI : 10.1109/CLOUD.2016.0024

L. Cpufreq,

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, Towards energy proportionality for large-scale latency-critical workloads, ISCA '14, pp.301-312, 2014.

M. Microchip and . Http,

B. Rountree, D. H. Ahn, B. R. De-supinski, D. K. Lowenthal, and M. Schulz, Beyond DVFS: A First Look at Performance under a Hardware-Enforced Power Bound, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum, pp.947-953, 2012.
DOI : 10.1109/IPDPSW.2012.116

G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas et al., Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling, Proceedings Eighth International Symposium on High Performance Computer Architecture, pp.18-28, 2002.
DOI : 10.1109/HPCA.2002.995696

J. Teich, Invasive algorithms and architectures. it -Information Technology, pp.300-310, 2008.

J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-landsiedel, W. Schröder-preikschat et al., Invasive Computing: An Overview, Multiprocessor System-on-Chip ? Hardware Design and Tool Integration, pp.241-268, 2011.
DOI : 10.1007/978-1-4419-6460-1_11

Q. Wu, Q. Deng, L. Ganesh, C. Hsu, Y. Jin et al., Dynamo, ISCA '16, pp.469-480, 2016.
DOI : 10.1145/502034.502045

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker et al., Discretized streams: Faulttolerant streaming computation at scale, SOSP '13, pp.423-438, 2013.

Y. Zhu, M. Halpern, and V. J. Reddi, Event-based scheduling for energy-efficient QoS (eQoS) in mobile Web applications, 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), pp.137-149, 2015.
DOI : 10.1109/HPCA.2015.7056028