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Abstract. Messaging applications are among the most popular inter-
net applications and people use them worldwide on a daily basis. Their
supporting infrastructure, though consisting of a multitude of servers,
is typically under central control. This enables censorship and seamless
user profiling. A fully decentralized infrastructure, with decentralized
control and redundant data storage, can mitigate these dangers. In this
paper we evaluate the basic ability of decentralized networks created by
the network overlay and data storage protocol Kademlia to serve as a
short-term data cache for messaging applications. Our results show, that
reliable retrieval of up to 20 replicas is possible.
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1 Introduction

Millions of people use messaging applications on a daily basis to exchange, e.g.,
text messages or pictures. Popular examples are WhatsApp, Snapchat, or Te-
legram. While technically a distributed system taking a multi-server or cloud
approach, the infrastructure supporting these messaging applications is typi-
cally under central control. This implies several security and privacy issues, e.g.,
eavesdropping, data manipulation, profiling, or censorship. While some of these
issues can be mitigated by end-to-end encryption and other measures, the danger
of censorship is inherent to such a system. To prevent censorship, data storage
and data transmission need to happen redundantly with multiple independent
responsible parties. For this purpose we evaluate redundant 24 hour short term
data storage and retrieval in a network organized by the distributed hash table
and overlay network Kademlia. Our results show how resilient such a network is
against censorship by evaluating how many data replicas need to be suppressed
in order to prevent successful data retrieval.

The remainder of this paper is organized as follows: First, we discuss related
work in Section 2 and briefly describe the Kademlia protocol in Section 3. We
then present our assumptions in Section 4. In Section 5 we present our protocol
modifications necessary for determining the storage resilience and introduce our
evaluation terminology. Based on this, we present and discuss the results of our



storage resilience measurements in Section 6. We conclude our paper in Section 7
with a brief summary and provide an outlook on future research.

2 Related Work

Kademlia and overlay networks in general have been studied extensively in the
scientific literature. A survey about research on robust peer-to-peer networks
from 2006 [12] already lists several hundred references. Another survey from
2011 reaches close to a hundred references [16]. Despite the large amount of pu-
blications in general, the actual feasibility for redundant storage and retrieval in
Kademlia has not been thoroughly evaluated. We limit our discussion of related
work to existing distributed messaging systems and to literature with relevance
for redundant storage and retrieval in Kademlia.

The fully distributed messenger Freenet [2] has the goal of providing censorship-
resilient communication and publishing. At its core it uses a “small world” over-
lay network. Roos et al. [15] took measurements in a real world Freenet network.
They found it suboptimal for routing and experienced long delays and low success
rates for data retrieval. For Kademlia-type networks the number of nodes to con-
tact for a successful data retrieval grows only logarithmically with the network
size n [14]. For sufficiently random node identifiers Cai et al. [1] proved an upper
bound of O(c · log n), with c being a constant factor.

Ji-Yi et al. [8] describe a p2p cloud storage system named MingCloud. They
experimentally evaluate a theoretical value called system availability, ranging
from 0 to 1, in connection with full copy redundancy and erasure code. The
authors describe MingCloud as based on the Kademlia Algorithm, but the focus
of the paper is on a comparison the full copy approach with erasure codes.
Beyond the system availability, no other properties are evaluated. Fedotova et
al. [4] examine Kademlia for data storage and retrieval in enterprise networks.
However, their focus is the implementation of different privileges for data access,
not on evaluating redundant retrieval. Park et al. [11] propose a p2p based cloud
storage system for redundant storage and retrieval. Their focus is on reducing
the required data traffic as well as preserving data privacy. They compare an
encoding scheme named Fountain code to other approaches like erasure coding.
While their system is p2p based, it does not use the Kademlia protocol. The
Bittorrent software Vuze [7] uses a modified version of Kademlia for data storage
and retrieval. To handle possibly malicious nodes, Vuze requests a value from 20
nodes during a value lookup. While this modification of the Kademlia protocol is
very similar to ours, there is no further data presented on the storage resilience
resulting from this approach.

3 Kademlia

With the Kademlia overlay network, resources (nodes and values) are identified
by a numerical id with the fixed bit-length b. Each node maintains a routing table
containing identifiers of other nodes, its contacts. The routing table consists of



b so-called k-buckets, indexed from 0 to b − 1. Each of the k-buckets can hold
at most k contacts. The decision which contacts to store in a bucket depends
on the node id, the bucket index, and the contact id. The distance between two
identifiers is computed using the XOR metric, meaning that for two identifiers
ida and idb the distance is dist(ida, idb) = ida ⊕ idb, interpreted as an integer
value. A bucket with index i is populated with those contacts id i fulfilling the
condition 2i ≤ dist(id , id i) < 2i+1. The bucket with the highest index covers
half of the id space, the next lower bucket a quarter of the id space, and so on.
Another property of Kademlia is the request parallelism α, which is the number
of contacts queried in parallel when a node tries to locate another node or a
data object for a given id. The staleness limit s determines how many times in
a row communication with a contact must fail, so that it is considered stale and
removed from the routing table. The Kademlia authors set the default values
b = 160, k = 20, α = 3, and s = 5.

Furthermore, nodes can perform the following four remote procedure calls
(RPCs): Ping probes a node to check whether it is online. Store instructs a node
to store an id -value pair. Find node looks up the k nodes closest to a given target
id. A node selects the α contacts closest to the id from its routing table and sends
a request to each of them. These nodes respond with their own list of closest
contacts, which can then be used for further queries. This way, the requesting
node iteratively gets closer to the target identifier. The RPC terminates when
a number of k nodes have been successfully contacted, or no more progress can
be made. Find value retrieves the value for a given target id. It has almost the
same behavior and termination conditions as find node. The difference is, that
nodes can answer by sending the requested value instead of a list of closest nodes.
When this happens, find node terminates immediately.

To publish an id -value pair a node first performs the find node RPC to get
a list of k successfully contacted nodes. It then sends a replica of the id -value
pair to each of them via the store RPC.

Kademlia uses three different republishing mechanisms. Their purpose is to
prevent id -value pairs from becoming unavailable and to store them at nodes
with ids close to the id of a value. With the first republishing mechanism nodes
periodically republish their stored id -value pairs every 60 minutes. This can lead
to a significant amount of traffic. Also, whenever a node has only just republished
an id -value pair, additional republications are unnecessary. Therefore, as an
optimization, a node does not republish id -value pairs it was asked to store
itself within the previous 60 minutes. The second mechanism is an opportunistic
one. Whenever a node carries out the Find value RPC successfully, it often has
to contact several nodes before finding one that returns the value. After getting
the value, the node performs a Store RPC. Out of the previously contacted
nodes not returning the value, it sends the id -value pair to the one closest to the
value id. The third mechanism is also opportunistic. Whenever a node learns of
another node not present in its routing table, it might send id -value pairs from
its own storage to that node. The decision which pairs to send is based on the



number of known nodes with ids placing them between the new node and an
id -value pair.

4 System Model

Our system consists of a number of networked nodes connected by the Kademlia
overlay network. Communication is message based and takes place directly bet-
ween two nodes. The underlying network allows communication between any two
nodes. Kademlia not only defines an overlay network structure, but also provides
the functionality of a distributed hash table (DHT). Therefore, the nodes in our
system can store data values at other nodes of the network (put operation) and
retrieve values from them (get operation).

We distinguish between storing and non-storing nodes. We expect storing
nodes to be servers provided by volunteers, a concept successfully realized with,
e.g., the relay servers of the Tor network [3]. Non-storing nodes are PCs, tablets,
mobile phones, or other end devices people use for messaging. A functional and
well behaved storing node stores a received id -value replica unmodified in its local
storage. Furthermore, when asked for a value contained in the local storage, the
node will include an unmodified id -value replica in its answer.

A network of storing nodes is at the core of the messaging system. We expect
these nodes have a session length, i.e. a continuous participation in the network,
of several hours or more at a time. For the non-storing nodes the session length
is less relevant, but we assume that they connect to the network at least once
every 24 hours. Given that many devices have a continuous connection to the
internet, this does not seen unreasonable.

We further assume that an attacker exists with the goal of censoring data
and preventing its retrieval from the core network. The strength of the attacker
is measured by the number of id -value replicas it can successfully suppress on
average per retrieval request.

5 Redundant Storage and Retrieval

As described in Section 3, a publishing node initially stores replicas of an id -
value pair at up to k disjunct nodes that were selected using find node. This is
the put operation. The number of replicas stored during a single put operation
is the replica storage count (RSC).

The original find value RPC of Kademlia terminates immediately when a
node returns a replica of the requested value. However, for redundant retrie-
val, we need multiple replicas returned by disjunct nodes. To achieve this with
Kademlia, we modified the responses and termination conditions for find value.
During the value lookup a node responds not with either a contact list or a
value replica, but, whenever possible, with both of them. The lookup no longer
terminates on receiving the first value replica, but collects as many replicas as
possible, until up to k disjunct nodes have responded. These changes potentially
give us up to k value replicas returned by k disjunct nodes.



In terms of censorship we must consider the worst case in which a replica is
suppressed right at the initial put operation. Suppressing a replica at that point
also suppress all its subsequent replicas created by Kademlia’s republishing me-
chanisms. We, therefore, can only consider replicas that are unique with regard
to the initially stored RSC replicas. Hence, two or more replicas derived from the
same initial replica, are considered a single unique replica. We call the retrieval
of replicas for an id the get operation. The number of retrieved unique replicas
is the unique replica return count (RRCuniq). Since the RRCuniq is limited by
the RSC and, therefore, by k, we introduce the term unique replica return ratio
(RRRuniq) to denote the ratio between the maximum stored replicas upon a put

and the returned unique replicas. We define it as RRRuniq =
RRCuniq

k . Accor-
dingly, an RRRuniq of 100% corresponds to retrieving k unique replicas with a
get operation.

6 Evaluation

In the following, we evaluate the put and get operations in a simulated Kademlia
network acting as a core network of storing nodes as described in the system
model in Section 4. Specifically, we evaluate on how many nodes a value is stored
at upon a single put operation and how many unique replicas of this value we
can retrieve afterwards with a get operation. We first describe the evaluation
environment and the simulation scenarios. Then, we present our results and
discuss them.

6.1 Environment and Parameters

For our simulations, we use the Java-based network simulation software PeerSim
[9]. We extended the partial Kademlia implementation from the PeerSim website
[10] to implement the full Kademlia protocol. Additionally we wrote software
components to provide functionality for network churn and data storage and
retrieval.

We proceed from the fact that different parameters may affect the storage
resilience in Kademlia.

Kademlia Bucket Size: The bucket size k defines how many nodes should
store a value upon a put operation. Moreover, it determines how many nodes
are requested for a value upon a get operation. We evaluate the implication of
this parameter by setting it to different values. In our simulations, we use the
values 10 to 50 in steps of five.

Network Size: We consider two differently sized networks, i.e., one with 2500
nodes and one with 5000 nodes.

Network Churn: We consider three churn scenarios, where the same number
of nodes join and leave the network each minute, keeping the network at roughly
the same size. The numbers are selected so that in the simulated 24 hours the
number of joins/leaves are either one, two, or four times the network size. We
call these low, medium, and high churn. For a network of size 2500 the means



a join/leave rate of 2/2, 4/4, and 7/7, resulting in an average participation for
a node of 500, 380, and 270 minutes. For a network of size 5000 the means a
join/leave rate of 4/4, 7/7, and 14/14, resulting in an average participation for
a node of 500, 400, and 270 minutes.

Data Traffic: For nodes to fill and update their routing tables, each node
performs 10 get operations with random ids per minute throughout the whole
simulation. Additionally, Kademlia requires each node to perform a so-called
“bucket-refresh” every 60 minutes for maintenance purposes. For this, a node
randomly generates an id from the id range of each k-bucket and performs
find node RPCs for these ids.

6.2 Simulation Phases:

The initial bootstrap procedure to create the network is performed randomly in
terms of time and bootstrap node selection. A new node joins the network at a
random point in the simulated time that is evenly distributed between 0 and 30
minutes. The bootstrap node is randomly chosen from the nodes already present
in the network. Therefore, in all simulations the network is fully setup after 30
minutes (setup phase). From minute 30 to minute 60 (stabilization phase), we
allow the network to stabilize. After that, starting at minute 60, we apply churn
(churn phase). The churn phase lasts 25 hours.

6.3 Measurements

During the first half hour of the churn phase we carry out 1000 put operations.
We select the exact point in time, the value id, and the node performing the
put operation, randomly. Each put operation is followed by get operations for
the same id and with randomly selected node. These get operations take place 1
minute, 5 minutes, 30 minutes, and 1 hour after their respective put operation,
and then every hour until 24 hours have passed.

For each put operation we log the replica storage count RSC. For each get
operation we log the unique replica return count (RRCuniq) and the necessary
effort Eff, which is the total number of requests sent during the operation.

Our evaluation is based on three simulation runs for each parameter set. We
initialized the simulator’s random number generator with a different seed for each
run. This results in a different network setup, different value ids, and different
nodes carrying out the put and get operations, while keeping the parameter set
identical. Hence, our evaluation is based on 3000 put operations and 27·3000 get
operations for each combination of network size, churn, and k value.

6.4 Results

We first present the results for the replica storage count RSC. After that we
show the results for unique replica recovery rate RRRuniq. We conclude our
results by presenting the values of k necessary for achieving a required unique
replica recovery count RRCuniq and, thereby, the number of replicas an attacker
would have to suppress for successful censorship.



Replica Storage Count For almost all put operations in all simulations the
RSC was equal to its maximum value of k. Few exceptions occured due to the
circumstance, that the store RPCs of a put operation take place only after the
find node RPC has finished. Finding a node and storing a replica on it is not
atomic. A node selected for storage might leave the network just before receiving
a store RPC, reducing the RSC by one. Still, this rarely happened and the RSC
reached k in the vast majority of cases despite the churn. Therefore, we assume
RSC = k from here on.

Unique Replica Retrieval Rate In the evaluation of the RRRuniq only the
worst retrieval result for each id -valuepair is considered. The first step is the
selection of the get operation with the smallest unique replica retrieval count
RRCuniq (out of 27 over a range 24 hours) for each of the 3000 put operation.
We then calculate the arithmetic mean of the resulting 3000 RRCuniq values

and divide it by k to get the average unique replica retrieval ratio RRRuniqẆe
further compute the arithmetic mean of the effort Eff taken in a get operation,
based on all 27·3000 get operations of a parameter set.
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The Figures 1 and 2 show the mean RRRuniq and Eff over k for different
churn in networks of with 2500 and 5000 nodes. In total, the graphs for both
network sizes look very similar, matching previous results on the scalability of
Kademlia [5,6]. The RRRuniqvalues for the larger network are just slightly lower,
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Fig. 2. RRRunique and Eff , Size 5000, 3 churn scenarios

indicating that Kademlia also scales well with the network size in terms of data
storage and retrieval.

For both network sizes the retrieval effort Eff grows with k, which is to
be expected, since k determines the number of replicas to retrieve. Additionally
the effort also scales with the degree of churn. The higher the churn, the more
likely it is that a node’s routing table contains nodes which have already left
the network. Therefore, the probability of sending requests without getting an
answer, and in turn the retrieval effort, increases.

Against our expectations, the unique replica retrieval rate is not close to a
flat line, but slightly increases with k in each churn scenario. For k = 10 it is
at or slightly below 40% and grows by about 6% towards k = 50. Hence, an
increase in k gives an increase in the unique replica retrieval count RRCuniqthat
is beyond linear, while the effort for retrieval is linear.

Among the churn scenarios we see that, as expected, higher churn hurts the
retrieval rate. This is due to a greater loss of nodes with data on them and
greater influx of nodes that initially have no data. Still, the decrease in retrieval
rate is only at about 5%.

Sufficient k Besides evaluating the mean RSC and RRRuniq for different pa-
rameter sets, we also determined lower bounds for k that can provide a specific
RRCuniq with very high probability. The unique replica return count RRCuniq

is a decisive value for resilience against censorship. The more unique replicas one
is likely to retrieve, the more replicas need to be suppressed by an attacker.
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We, therefore, determined the values of k that are sufficient to reach a specific
RRCuniq with a preset probability. We call these values ksuf . The RRCuniq

values in Figures 3 and 4 were achieved by 100% of all get operations for each
respective parameter set. This means that, within our simulations, these are
guaranteed values. If, e.g., the requirement is to have an RRCuniq of at least
11 for all get operations in the network with 5000 nodes and with high churn
(Figure 4), a k value of 40 is sufficient. For a required RRCuniq of 12 the sufficient
value of k in the same scenario is 45. These jumps in value, visible as stairway
effect in the graphs, exist due to the steps of 5 between the k values in our
simulations. Therefore, our ksuf between those k values might even be a bit
more conservative than absolutely necessary.
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The RRCuniq values in Figures 5 and 6 were achieved by 90% of all get
operations for each respective parameter set. With the lower 90% requirement,
as shown in Figure 6, the sufficient k for achieving an RRCuniq of 11 and 12
drops to 35 for both values. Also, the RRCuniq achievable with the maximum k
of 50 increases from 16 to 20.

It is noticeable that with the 100% requirement, the values for ksuf in the
different churn scenarios, though distinguishable, are very close to each other
and often overlap. With the 90% requirement overlap is almost the norm, and
in Figure 5 the ksuf for medium churn at the RRCuniq value 15 is even slightly
higher than the ksuf for high churn. Based on this, we conclude that the diffe-
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rence in RRCuniq for the different churn scenarios is based in only about 10%
of get operations performing significantly worse with the higher churn.

In conclusion of the evaluation, highly redundant short-term data storage
and retrieval with Kademlia is possible for our network scenarios. Scaling the
network’s storage resilience with the parameter k allows for strong assurances
regarding lower resilience bounds even with churn.

7 Conclusion & Future Work

In this paper, we analyzed the storage resilience of the overlay network and
distributed hash table Kademlia. For this we performed and evaluated a large
number of simulations with different Kademlia parameters and network charac-
teristics. We evaluated the actual redundancy of storage operations, the number
of retrievable unique data replicas and as well as the retrieval effort. Beyond that
we calculated lower bounds of the parameter k for achieving specific numbers
of unique data replicas and, thereby, a minimum number of replicas an attacker
needs to suppress for successful censorship.

In future research we will further test the storage resilience with different
churn types proposed in Roos2015 [13] and perform further simulations with
additional values for k.
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