
HAL Id: hal-01824816
https://inria.hal.science/hal-01824816

Submitted on 27 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Information Flow Tracking for Side-Effectful Libraries
Alexander Sjösten, Daniel Hedin, Andrei Sabelfeld

To cite this version:
Alexander Sjösten, Daniel Hedin, Andrei Sabelfeld. Information Flow Tracking for Side-Effectful
Libraries. 38th International Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE), Jun 2018, Madrid, Spain. pp.141-160, �10.1007/978-3-319-92612-4_8�. �hal-
01824816�

https://inria.hal.science/hal-01824816
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Information Flow Tracking for
Side-effectful Libraries

Alexander Sjösten1, Daniel Hedin1,2, and Andrei Sabelfeld1

1 Chalmers University of Technology
2 Mälardalen University

Abstract. Dynamic information flow control is a promising technique
for ensuring confidentiality and integrity of applications that manipulate
sensitive information. While much progress has been made on increas-
ingly powerful programming languages ranging from low-level machine
languages to high-level languages for distributed systems, surprisingly
little attention has been devoted to libraries and APIs. The state of the
art is largely an all-or-nothing choice: either a shallow or deep library
modeling approach. Seeking to break out of this restrictive choice, we
formalize a general mechanism that tracks information flow for a language
that includes higher-order functions, structured data types and references.
A key feature of our approach is the model heap, a part of the memory,
where security information is kept to enable the interaction between the
labeled program and the unlabeled library. We provide a proof-of-concept
implementation and report on experiments with a file system library. The
system has been proved correct using Coq.

1 Introduction

While useful, access control is not enough: it is crucial what applications do with
the data after access has been granted [25]. Information flow control tracks the
propagation of data in programs, thus enforcing confidentiality and integrity poli-
cies. Due to the widespread use of highly dynamic languages, such as JavaScript,
there has been a growing interest in dynamic information flow control. There
are two basic kinds of flows to consider: explicit and implicit [5], related to the
notions of data flow and control flow. Dynamic information flow is tracked at
runtime by extending the data with security labels, which are propagated and
checked against a security policy during execution. The detection of potential
security violations cause program execution to halt.

While much progress has been made on increasingly powerful programming
languages ranging from low-level machine languages to high-level languages for
distributed systems, surprisingly little attention has been devoted to libraries
and APIs3. The main challenge is when the library is not written in the language
itself, and thus not compatible with the labeled semantics of the program. There
are mainly two situations where this occurs: 1) when the library is part of the

3 For elegance of expression, when we write library in this paper we refer to both
libraries and APIs.

1

standard execution environment, and 2) when the library is brought into the
language using some form of foreign function interface (FFI). In such cases,
values passing between the program and the library must be translated. The
process of translating values from one programming language to another is known
as marshaling.

Marshaling of labeled values additionally entails that security labels must
be removed from the values being passed from the program to the library, and
reattached on the values returned from the library to the program. We refer
to those steps as unlabeling and relabeling of the values, and the description of
how it should be done as a library model. The main difference between standard
marshaling and marshaling of labeled values is the latter removes information
from the values passed to the library. To be able to correctly relabel values going
from the library to the program, the labels removed during the unlabeling process
must be used, since the returned value contains no security information. This
means that the library models are inherently stateful — the removed labels are
stored in a model state used when relabeling.

Library models can be split into two categories: deep and shallow models [14].
Deep models track information flow inside the library, requiring precise mod-
eling of the execution of the library, while shallow models are limited to the
security labels on the boundary of the library. Often, deep models necessitate
reimplementation of parts of the library functionality within the model, making
them difficult to create and maintain. Shallow models, on the other hand, are
significantly more lightweight, but possibly too imprecise. In this work, we are
interested in the boundary between deep and shallow models.

Current state of the art in dynamic information-flow tracking does not fit
this classification entirely, in part due to ad-hoc handling of libraries. To the
extent addition of new libraries is supported, the models used tend towards
shallow models. This is true for, e.g., FlowFox [13], and experimental extensions
of JSFlow [15]. On the other hand, JSFlow and FlowFox both use deep models to
provide fine grained information-flow tracking for built in libraries. JSFlow, e.g.,
implements the full ECMA-262 version 5 standard using what is best considered
a deep approach.

In recent work, Hedin et al. [17] initiate a framework for tracking information
flow in libraries. The setting is a labeled program and an unlabeled library that
share the same core semantics (split semantics) in order to limit the marshaling
to security labels only. Their work targets a focused functional language with
higher-order functions (which allows for both callbacks and promises to exist),
and structured data in terms of lists. It does not, however, handle side effects,
which means that many libraries cannot be modeled in a satisfactory way. As an
example, it is unavoidable for a standard file system library to maintain state to
keep track of open files, stream positions and buffers. The success of a function
read(path, success, fail) is dependent both on the file path and the state
of the library which must be reflected by security models for the library.

The combination of state and higher-order functions significantly complicates
the library models and the model state over the ones used by Hedin et al. If

2

the state is first-class (i.e., it can be sent around as values, as in languages with
mutable references, records or objects) the situation is further complicated. This
is the setting we are interested in handling, as it captures the essence of many of
the problems found when modeling real libraries.

Program Library

read(...)

LModel

CModel

read(...)

read(...)

Fig. 1: Model heap illustration

To this end we introduce a model heap,
allowing library values to be tied to a mu-
table model state, which allows for secure
modeling of the interaction between first-
class state and higher-order functions.

Consider the file system example, de-
picted in Figure 1. When the program calls
the library function read, the library func-
tion is first lifted into the program using
the corresponding function model defined
by the library model, LModel. The lifting (illustrated by the dotted arrow in
the figure) is done by means of wrapping and results in an unlabeled function
that can be called by the program. When the wrapper is called with labeled
arguments, a new call model state, CModel, is created and used to hold the
labels of the arguments, since the underlying library function requires unlabeled
values. As can be seen in the figure, the call model state is connected to the
library model state and together they define the model state that the function
model of read interacts with. Any other values, including higher-order functions
and first-class state, defined in the library share the same library model state,
which guarantees that they have the same view of the library state, even in the
presence of mutability.

There are two main benefits of our work over ad-hoc modeling of libraries.
First, it lowers the modeling effort significantly, and, second, given that the
models properly describe the library, it guarantees noninterference. Both benefits
stem from expressing the models in a simplified model language that controls
the marshaling process, thus sidestepping the need to reimplement it repeatedly.

Considering the dimension of shallow and deep models, our work can be seen
as exploring the boundary. Shallow models are expressed solely in terms of the
boundary labels, while our work gains access to intermediate labels when models
for lazy marshaling, higher-order functions and first-class state are triggered.
In addition, it is relatively easy to extend our system to allow models to use
the runtime values allowing for dependent models [17]. Compared to fully deep
models, our work is limited to the information passing between the program and
the library at the point of passing. Thus, intermediate values and labels that do
not participate in cross-boundary activity is without reach. While deep models
in theory have access to more information and therefore have the potential to
be more precise, it is unclear if the added precision is significant in practice, in
particular in the light of the added implementation cost.

Contributions The main contributions of this paper are:

– We have created a language containing three cornerstones of library modeling:
higher-order functions, first-class state, and structured values (the syntax

3

and semantics are presented in Section 2 and Section 3, respectively, while
Section 6 discusses correctness).

– We have implemented a prototype and used it to explore the interaction
between the different features of the language (examples that illustrate our
mechanism are reported in Section 4).

– We have conducted a case study on a file system library, inspired by the file
system library in node.js [10], showing that our language is able to handle
stateful libraries (the case study is reported in Section 5).

– We have formalized the language and its correctness proof in Coq [19].

The scope of the prototype is to experimentally verify applicability of models,
not to assess performance in a full-scale implementation. The prototype serves
as a complement to the formal proof to create a system that is both correct and
useful. The full version of the paper, along with the formalization in Coq and
the proof-of-concept prototype can be found at [27].

2 Syntax

The language we present is a small functional language with split semantics
and lazy marshaling. The syntax of the language is defined as follows, where n
denotes numbers and x denotes identifiers.

e ::“ n | x | if e1 then e2 else e3 | let x “ e1 in e2 | fun x “ e | e1 e2 |
xlib | e1 ‘ e2 | ae | head e | tail e | e1 : e2 | r s | pe1, e2q | p q |
ref e | !e | t x : e u | e.x | e1 :“ e2 | e1 ; e2 | upg e `

The syntax of the language is entirely standard apart from the xlib construction
that lifts a library value to a program value, and upg e ` that gives the result of
the expression a given label, ` ::“ L | H. For simplicity, we identify sets with the
meta variables ranging over them. Let X range over lists of X for any set X,
where r s denotes the empty list and ¨ denotes the cons operator. An application
in the language is a triple pdp, dl,mq, where the first component is the labeled
program, the second component is the unlabeled library and the third component
is the library model. Throughout the rest of this paper, we use program when
referring to the labeled part, and library when referring to the unlabeled part.

The top-level definitions, d, allow for named definitions of functions and values
d ::“ fun fpxq “ e | let x “ e. The top-level model definitions, m, allow for named
definitions of models and labels m ::“ mod x :: γ | lbl x :: κ, where γ denotes
relabel models and κ denotes label terms. The label terms, κ ::“ ` | α | κ1 \ κ2
are terms that evaluate to labels in a given model state and consist of labels,
`, label variables, α, and the least upper bound of two label terms. The relabel
models, γ, used to relabel library values, are defined as follows

γ ::“ κ | pγ1, γ2q
κ | rγsκ | pϕÑ γ, ζqκ | refpϕ, γqκ

where ϕ denotes unlabel models, used to unlabel program values, and ζ denotes
effect constraints defined below. All values are given a label by a label term, and
the relabeling of structured values follows the structure of the value. To relabel a

4

function, we must know how to unlabel the argument, how to relabel the result,
and how the function interacts with the model state. To relabel a reference we
must know how to unlabel the values written and how to relabel the values read.
The unlabel models, ϕ, are defined as follows.

ϕ ::“ α | #αα | pϕ1, ϕ2q
α | rϕsα

Unlabeling of values is performed by storing the label of the value in the cor-
responding label variable in the model state. As for relabeling, unlabeling of
structured values follows the structure of the value. Unlabeling of functions and
references introduces an abstract name, #α, used by library functions to tie any
interaction to their model state in the effect constraints, ζ.

ζ ::“ !#αÑ ϕ | κ $ #αÐ γ | κ $ #α γ Ñ ϕ | κ $ αÐ κ

In the order of definition: a library function that reads a labeled reference defines
how to unlabel the read value, a library function that writes to a labeled reference
defines the security context in which the write occurs and how to relabel the
value to be written, a library function that calls a labeled function defines the
security context in which the call occurs, how to relabel the parameter and how
to unlabel the result, and finally, a library function that modifies the library state
defines the security context of the update and how the security model changes.

3 Semantics

We define the semantics step-wise in three parts. The first part defines the labeled
values, and the execution environment. The second part defines the evaluation
relation and how the function representations of the values are created and used
in the semantics. Finally, the third part defines how values are marshaled between
the program and the library. For space reasons, parts of the semantic definitions
have been left out. We refer the reader to the full version of this paper [27] for
the missing definitions.

3.1 Values

In order to differentiate between the labeled semantics and the unlabeled se-
mantics, we use X̂ to denote an entity in the labeled semantics corresponding
to the entity X in the unlabeled semantics. We only give the labeled values.
The unlabeled values are defined analogously. The values in the language, v̂,
are integers n, tuples, higher-order functions F̂ , lists pĤ, T̂ q, references pR̂, Ŵ q,
and records Ô, where higher-order functions, lists, references and records are
represented as (pairs of) functions in order to simplify the marshaling.

v̂ ::“ n` | pv̂1, v̂2q
` | pq` | F̂ ` | pĤ, T̂ q` | r s` | pR̂, Ŵ q` | Ô`

The labels, `, form a two-point upper semi-lattice L Ď H, where L denotes low
(public) and H denotes high (private). Let `1 \ `2 denote the least upper bound
of `1 and `2, and let v̂`2 “ v`1\`2 for v̂ “ v`1 .

The execution environment is a triple pς, Γ,Σq of the security context, ς,
the stack, and the heap. The security context ς ranges over labels `. The stack

5

Γ is a triple of stacks pρ̂, ρ, :ρq, containing pointers to the labeled frames, the
unlabeled frames and the model frames, respectively. The heap Σ is a triple of
heaps, pσ̂, σ, :σq, consisting of the labeled heap, the unlabeled heap and the model
heap. The labeled and unlabeled heaps can contain values (for implementing
references), and frames, whereas the model heap only contains frames. The labeled
and unlabeled frames, ω̂ and ω, are maps from identifiers to values, and the
model frames, :ω are maps from identifiers to model items. Each frame represents
a scope, and together with the corresponding stacks they form scope chains.
The model items, :ι ::“ ` | γ | ζ, consists of labels, relabel models and effect
constraints.

3.2 Evaluation relations

The evaluation relation for program execution is of the form ς, Γ |ù pΣ1, eq Ñ
pΣ2, v̂q, read “expression e evaluates in the environment consisting of the security
context, ς, the stack, Γ , and the heap, Σ1, resulting in the updated heap Σ2 and
value v̂”. Similarly, library execution is of the form ς, Γ |ù pΣ1, eq ù pΣ2, vq,
where the unlabeled semantics is parameterized over the security context to model
that the context is global and always available to the marshaling functions4.

Figure 2 contains a selection of the semantic rules of the program semantics
related to the marshaling of values.

The rules of the core language are standard. Whenever an integer is created
(int), it is always originally labeled L. Variables are retrieved from the labeled
heap using lookupL in var. If-statements (if-true and if-false) evaluate the
conditional expression and based on the result select which branch to take. The
branch taken is evaluated in a security context of ς \ ` and the returned value is
raised to `, where ` is the label of the result of the conditional expression.

Function closures are represented as functions, F̂ : pς, Γ,Σ1, v̂q Ñ pΣ2, v̂q,
created by lclos (fun) in the following way.

lclospρ̂1, x, eq “ λpς, pρ̂, ρ, :ρq, pσ̂1, σ1, :σ1q, v̂1q . pΣ, v̂2q
where σ̂2 “ σ̂1rρ̂ ÞÑ tx ÞÑ v̂ς1us, ρ̂ fresh
and ς, pρ̂ ¨ ρ̂1, ρ, :ρq |ù ppσ̂2, σ1, :σ1q, eq Ñ pΣ, v̂2q

The function closure will, when interacted with, create a new pointer to a labeled
frame containing the mapping of the parameter name x and the actual value v̂1,
which is raised to the current security context. The function expression e is then
evaluated, using the newly created pointer along with the updated heap. When
applying a function closure (app), the body of the function is executed in the
program semantics, under the elevated context consisting of the current security
context raised to the label of the function closure. Creation and application of
library closures, F : pς, Γ,Σ1, vq Ñ pΣ2, vq, is analogous.

Safe implementation of marshaling of references requires the ability to trap
and modify reads and writes in order to marshal the values passed by the
interaction. For this reason, references are represented as pairs of functions, one

4 In an operational semantics global non-constant values must be passed around during
execution, similar to in a pure functional language.

6

int
ς, Γ |ù pΣ,nq Ñ pΣ,nLq

var
lookupLpΓ,Σ, xq “ v̂

ς, Γ |ù pΣ, xq Ñ pΣ, v̂q

if-true

ς, Γ |ù pΣ1, e1q Ñ pΣ2, v
`
1q v1 ‰ 0

ς \ `, Γ |ù pΣ2, e2q Ñ pΣ3, v̂2q

ς, Γ |ù pΣ1, if e1 then e2 else e3q Ñ pΣ3, v̂
`
2q

if-false

ς, Γ |ù pΣ1, e1q Ñ pΣ2, v
`
1q v1 “ 0

ς \ `, Γ |ù pΣ2, e3q Ñ pΣ3, v̂3q

ς, Γ |ù pΣ1, if e1 then e2 else e3q Ñ pΣ3, v̂
`
3q

fun
ς, pρ̂, ρ, :ρq |ù pΣ, fun x “ eq Ñ pΣ, lclospρ̂, x, eqLq

app

ς, Γ |ù pΣ1, e1q Ñ pΣ2, F̂
`
q ς, Γ |ù pΣ2, e2q Ñ pΣ3, v̂1q

F̂ pς \ `, Γ,Σ3, v̂1q “ pΣ4, v̂2q

ς, Γ |ù pΣ1, e1 e2q Ñ pΣ4, v̂
`
2q

ref
ς, Γ |ù pΣ, eq Ñ ppσ̂, σ, :σq, v̂q ρ̂ fresh

ς, Γ |ù pΣ, ref eq Ñ ppσ̂rρ̂ ÞÑ v̂s, σ, :σq, plreadpρ̂q, lwritepρ̂qqLq

deref

ς, Γ |ù pΣ1, eq Ñ pΣ2, pR̂, Ŵ q
`
q

R̂pς \ `, Γ,Σ2q “ pΣ3, v̂q

ς, Γ |ù pΣ1, !eq Ñ pΣ3, v̂
`
q

assign

ς, Γ |ù pΣ1, e1q Ñ pΣ2, pR̂, Ŵ q
`
q

ς, Γ |ù pΣ2, e2q Ñ pΣ3, v̂q

Ŵ pς \ `, Γ,Σ3v̂q “ Σ4

ς, Γ |ù pΣ1, e1 :“ e2q Ñ pΣ4, v̂q

lib
lookupUpΓ,Σ, xq “ v lookupMpΓ,Σ, xq “ γ v ÒΓ,Σ γ “ v̂

ς, Γ |ù pΣ, xlibq Ñ pΣ, v̂q

Fig. 2: Selected labeled semantics

function for reading the reference, R̂ : pς, Γ,Σ1q Ñ pΣ2, v̂q, and one function
for updating the reference, Ŵ : pς, Γ,Σ1, v̂q Ñ Σ2. This allows us to marshal
references by wrapping the read and the write functions in functions that perform
the marshaling of the values at the time of interaction, similar to lazy marshaling
of lists [17]. Most languages do not support the creation of functions that are
triggered on interaction with values such as references or objects, which means
they cannot support marshaling of first-class mutable state. A notable exception
to this is JavaScript that allows methods to be tied to different aspects of object
interaction via the use of Proxy objects [22].

Creation of references given a fresh pointer into the labeled heap is defined
by lread and lwrite as follows.

lreadpρ̂q “ λpς, Γ, pσ̂, σ, :σqq . ppσ̂, σ, :σq, v̂q, where v̂ “ σ̂rρ̂s
lwritepρ̂q “ λpς, Γ, pσ̂1, σ1, :σ1q, v̂q . pσ̂2, σ1, :σ1q

where v` “ σ̂1rρ̂s, ς Ď `, σ̂2 “ σ̂1rρ̂ ÞÑ v̂ς s

References (ref) are created by selecting a fresh heap location made to point to
the value of the reference. The heap location is then used to create a pair of access

7

functions. The created reference follows the same intuition as for all created values.
All values are labeled L upon creation, which is why the pair of access functions
are labeled L in ref. Note that the value that the reference is referring to may
be labeled differently, due to the distinction between reference as a value and the
value the reference is referring to. Dereferencing (deref) uses the read function
of the reference to get the value to be read, while assignment (assign) uses the
write function. Creation and use of library references, R : pς, Γ,Σ1q Ñ pΣ2, vq
and W : pς, Γ,Σ1, vq Ñ Σ2 is analogous.

It is worthwhile to point out the no-sensitive upgrade (NSU) check in lwrite,
which demands that the context, which the label of the reference is a part of, is
lower or equal to the label of the referenced value, ς Ď `. Allowing labels of values
to change freely leads to an unsound system, due to the possibility of implicit
flows into the labels themselves [1,28].

Disregarding the encoding of functions and references into functions, up to
this point, the labeled and unlabeled semantics are equivalent to their standard
formulations. The essence of this paper is in the marshaling of values between the
program and the library, performed by the unlabeling and relabeling functions,
defined in the following section.

3.3 Marshaling

All interaction between the program and the library is initiated by lifting named
library values into the program. This is done (lib) by looking up the value,
and the corresponding relabel model used to relabel the value. Interaction with
the relabeled value may cause further marshaling. Unlabeling of a value is done
w.r.t. an unlabel model, ϕ, which defines how to store the removed label(s) in the
model state. Relabeling of a value is done w.r.t. a relabel model, γ, which defines
how to compute the label in terms of the model state. Formally, unlabeling
is a function of the form v̂ Óς,Γ,Σ1 ϕ “ pΣ2, vq taking a labeled value v̂, an
environment, ς, Γ,Σ1 and an unlabel model ϕ and returning an updated heap,
Σ2, and an unlabeled value v. Similarly, relabeling is a function of the form
v ÒΓ,Σ γ “ v̂, taking an unlabeled value, v, an environment, Γ,Σ, and a relabel
model, γ, and returning a labeled value v̂. The only modified part of the heap
for both unlabeling and relabeling is the model heap.

There are six types of values: integers, tuples, lists, records, higher-order
functions and references. In the rest of this section we describe how to evaluate
label terms (used when relabeling) and how to marshal higher-order functions
and references. We refer the reader to the full version of this paper [27] for the
treatment of the other constructs.

rrαssΓ,Σ “

#

`, if lookupMpΓ,Σ, αq “ `

L, otherwise

rr`ssΓ,Σ “ `

rrκ1 \ κ2ssΓ,Σ “ rrκ1ssΓ,Σ \ rrκ2ssΓ,Σ

Label terms Evaluation of label
terms is done w.r.t. a model state,
where lookupM is used to traverse
the model scope chain to find the
first label corresponding to a given
label variable.

8

Higher-Order Functions Marshaling of higher-order functions involves both
marshaling the functions as values as well as ensuring the parameter and return
value are properly marshaled.

Unlabeling Unlabeling a program closure removes and stores the label and returns
a library closure created by wrapping the program closure. The library closure
is tied to the abstract name, π, used by the wrapper to relabel the parameters
before the call and unlabel the result after the call.

F̂ ` Óς,Γ,Σ #πα “ pupdateMpς, Γ,Σ, α, `q,u-lclospF̂ , `,#πqq

u-lclospF̂ , `1,#πq “ λpς, Γ,Σ1, v1q . pΣ3, v2q
where κ $ γ Ñ ϕ “ lookupMpΓ,Σ1, πq

`2 “ rrκssΓ,Σ1

v̂1 “ v1 ÒΓ,Σ1 γ

pΣ2, v̂2q “ F̂ pς \ `1 \ `2, Γ,Σ1, v̂1q
pΣ3, v2q “ v̂2 Óς\`1\`2,Γ,Σ2

ϕ

The translation of a program
closure, F̂ , into an library closure
is performed by u-lclos, that takes
the program closure, the label of
the program closure and the ab-
stract name. When the library clo-
sure returned by u-lclos is applied
the following occurs. First, the
function call model bound to the abstract name is fetched using lookupM. The
function call model contains a label term representing the security context of the
application, how to relabel the parameter and how to unlabel the return value.
Second, the relabel model, γ, is used to relabel the parameter, v1. Third, the
program closure is called in the security context of the call raised to the label of
the closure and the evaluation of the context label term, κ. The result of the call
is a labeled value, v̂2. Finally, v̂2 is unlabeled which gives the result, v2, of the
application of the unlabeled closure. Notice that all relabeling and unlabeling is
done with respect to the model state of the caller.

Relabeling Relabeling a library closure is done by labeling the program closure
created by wrapping the library closure. The wrapper unlabels the arguments
before the call and relabels the result of the call.

F ÒΣ,pρ̂,ρ,:ρq pϕÑ γ, ζqκ “ l-uclospF, :ρ, pϕÑ γ, ζqq
rrκsspρ̂,ρ,:ρq,Σ

The process is controlled by the function relabel model, pϕÑ γ, ζqκ, where the
evaluation of κ gives the label of the wrapper closure.

l-uclospF, :ρ
2
, pϕÑ γ, ζqq “

λpς, pρ̂, ρ, :ρ
1
q, pσ̂, σ, :σq, v̂1q. pΣ4, v̂2q

where Σ1 “ pσ̂, σ, :σr:ρ ÞÑ Hsq, :ρ fresh
pΣ2, v1q “ v̂1 Óς,pρ̂,ρ,:ρ¨:ρ

2
q,Σ1

ϕ

Σ3 “ t|ζ|uς,pρ̂,ρ,:ρ¨:ρ
2
q,Σ2

pΣ4, v2q “ F pς, pρ̂, ρ, :ρ ¨ :ρ
1
q, Σ3, v1q

v̂2 “ v2 Òpρ̂,ρ,:ρ¨:ρ
2
q,Σ4

γ

The translation of the library
closure, F , into a program clo-
sure is performed by l-uclos, which
takes the library closure, the cur-
rent model frame stack, the unla-
bel model for the parameters, ϕ,
the relabel model for the return
value, γ, and the effect constraints,
ζ. When called the program clo-
sure produces a fresh frame pointer, pointing to a new model frame in the model

9

heap. The parameter to the library function is unlabeled based on the unlabel
model, ϕ, and the effect constraints, ζ, are evaluated to update the model state
accordingly. After that, the library function is called with the unlabeled parameter
in the security context, ς, of the call. The result of the function call is relabeled
with the relabel model, γ, and returned to the program. Note that all labeling
and unlabeling is done w.r.t. the model frame stack of the unlabeled closure.
Also note that the order is important; if the unlabeling of the parameter occurs
after evaluating the effect constraints, the label of the parameter cannot be used
when updating the model state with the side effects.

Effect constraints Effect constraints define how a library function interacts
with unlabeled program functions and references and how the library function
changes the model state. Model state changes are effectuated on call to the
library function whereas effect constraints that define interaction with unlabeled
program functions and references are stored in the model state. When a library
function or reference is interacted with, the abstract name will tie the interaction
to the corresponding effect constraint in the model state of the interaction. The
meaning of the effect constraints is defined as follows

t|!#αÑ ϕ|uς,Γ,Σ “ defineMpΓ,Σ, α, ϕq
t|κ $ #αÐ γ|uς,Γ,Σ “ defineMpΓ,Σ, α, κ $ γq

t|κ $ #α γ Ñ ϕ|uς,Γ,Σ “ defineMpΓ,Σ, α, κ $ γ Ñ ϕq
t|κ1 $ αÐ κ2|uς,Γ,Σ “ updateMpς \ rrκ1ssΓ,Σ , Γ,Σ, α, rrκ2ssΣ,Γ q

when ς \ rrκ1ssΓ,Σ Ď lookupMpΓ,Σ, αq

where defineM binds the name α to its corresponding model value in the top
model frame, if α is not defined in that model frame, updateM updates the label
pointed to by α in the scope chain, or inserts it if it is not present, and lookupM
returns the model value that is the first to match the name α in the scope chain.

References Marshaling of references shares some similarities with marshaling
of higher-order functions. Calling a function passes the argument and the return
value in opposite directions, similar to reading and writing to a reference.

Unlabeling Unlabeling a program reference removes and stores the label, and the
read and write functions are wrapped to create library counterparts.

pR̂, Ŵ q` Óς,Γ,Σ #πα “

pupdateMpς, Γ,Σ, α, `q, pu-lreadpR̂, `,#πq,u-lwritepŴ , `,#πqqq

The read and the write functions are translated independently w.r.t. the abstract
name #π.

u-lreadpR̂, `,#πq “ λpς, Γ,Σ1q . pΣ3, vq
where ϕ “ lookupMpΓ,Σ1, πq

pΣ2, v̂q “ R̂pς \ `, Γ,Σ1q

pΣ3, vq “ v̂ Óς\`,Γ,Σ2 ϕ

The program read function, R̂ is
translated by u-lread, which takes
the read function, the label of the ref-
erence and the abstract name. When
the resulting library read function is
interacted with, the program read function is used to get the labeled value of
the reference. This value must be unlabeled before being returned, which is

10

done by looking up a program reference read model, ϕ, in the model state of
the interaction. It is the model of the caller, i.e., a library function model that
provides the read model for the references it reads.

u-lwritepŴ , `,#πq “ λpς, Γ,Σ1, vq . Σ2

where κ $ γ “ lookupMpΓ,Σ1, πq
v̂ “ v ÒΓ,Σ1 γ

Σ2 “ Ŵ pς \ `\ rrκssΓ,Σ1
, Γ,Σ, v̂q

The program write function, Ŵ
is translated by u-lwrite, which
takes the write function, the label
of the reference and the abstract
name. When the resulting library
write function is used, the associated program reference write model, κ $ γ,
is fetched in the current model state. This model defines both how to relabel
the written unlabeled value, and the context in which the write occurs. Then
the unlabeled value, v is relabeled before being written using the labeled write
function in a context consisting of the current security context of the call raised
to the reference label and the evaluation of the context label term, κ.

Relabeling Relabeling a library reference is done by translating the read and
write functions into program counterparts and relabeling the result.

pR,W q ÒΣ,pρ̂,ρ,:ρq refpϕ, γq
κ “ pl-ureadpR, :ρ, γq, l-uwritepW, :ρ, γ, ϕqq

rrκsspρ̂,ρ,:ρq,Σ

The read and the write functions are translated independently w.r.t. the relabel
model, refpϕ, γqκ.

l-ureadpR, :ρ
2
, γq “ λpς, pρ̂, ρ, :ρ

1
q, Σ1q . pΣ2, v̂q

where pΣ2, vq “ Rpς, pρ̂, ρ, :ρ
1
q, Σ1q

v̂ “ v Òpρ̂,ρ,:ρ
2
q,Σ2

γ

The library read function, R,
is translated by l-uread, which
takes the read function, the cur-
rent model frame stack, and the
relabel model, γ. When the resulting program read function is interacted with,
the unlabeled read function is used to fetch the unlabeled value of the reference.
The result is relabeled using the relabel model in the model state of the reference
and the result is returned.

l-uwritepW, :ρ
2
, γ, ϕq “ λpς, pρ̂, ρ, :ρ

1
q, Σ1, v̂q . Σ3

where ` “ rrlbltermpγqsspρ̂,ρ,:ρ
2
q,Σ1

, ς Ď `

pΣ2, vq “ v̂ς Óς,pρ̂,ρ,:ρ
2
q,Σ1

ϕ

Σ3 “W pς, pρ̂, ρ, :ρ
1
q, Σ2, vq

The library write function
W is translated by l-uwrite,
which takes the write function,
the current model frame stack,
the relabel model, γ, and the
unlabel model, ϕ. The reason l-uwrite takes the relabel model in addition to the
unlabel model is that it is used to calculate the label against which the NSU
check is made. The label of the stored value is represented by the label term of
the relabel model, extracted by the lblterm function, defined in the obvious way
by pattern matching. If the write is allowed, the labeled value to be written to
the library reference is raised to the context ς, before being unlabeled using the
unlabel model, ϕ. Finally, the unlabeled value is written to the library reference,
using the unlabeled write function.

Interaction with the model heap To see how higher-order functions and
references interact with the model heap, consider the code snippet below to
the right. The program calls the library function f, which takes a param-
eter, and creates a reference r initially set to the value of the parameter.

11

let (g, r) = lib f 10
in r := upg 15 H;

g 20
%%
lbl l :: L
mod r :: ref (l, l)
mod f :: x -> (y -> l, r)
fun f x = let r = ref x

in (\y. !r, r)

f returns a pair, where the first element is a func-
tion that, given any argument, will dereference the
reference and the second element is the actual refer-
ence. This pair is stored as (g, r). Thereafter, r is
assigned the value 15H , before g is called with the
parameter 20L.

The following occurs w.r.t. relabeling and unlabeling in the program, where
the initial setting can be seen in Figure 3.

l :: L
r :: refpl, lq
f :: xÑ py Ñ l, rq

LModel

0

let (g, r) = lib f 10

in r := upg 15 H;

g 20

Program

fun f x =

let r = ref x

in (\y. !r, r)

Library

Stacks: :ρ : [0]

Fig. 3: Initial structure

When f is lifted to the program, l-uclos is used to relabel the library closure,
which will copy the model frame stack to the wrapped f and store the function
model xÑ py Ñ l, rq. In the example, the resulting program closure is applied
to 10L, which causes a new model frame to be allocated on the model heap,
into which the argument is unlabeled, causing L to be stored in the new model
frame as the label for x, and the pointer to the new model frame is stored in
the model frame stack. After this, the actual unlabeled function is called, which
results in the returned pair being relabeled. The relabeling of the pair results
in l-uclos being used to relabel \y. !r with the model y Ñ l, and l-uread and
l-uwrite being used to relabel r with the reference model r. The key here is that
the relabeling occurs in the same model state, which means that the produced
program function and reference will be bound to the same model frame stack.
This causes writes to the reference to modify the model frame shared with the
function, ensuring that they have the same view of the model of the reference.
The entire process is highlighted in Figure 4.

x ÞÑ L

l :: L
r :: refpl, lq
f :: xÑ py Ñ l, rq

LModel

1

0

let (g, r) = lib f 10

in r := upg 15 H;

g 20

Program

fun f x =

let r = ref x

in (\y. !r, r)

Library

Stacks: :ρ : [1, 0] f : [0] g : [1, 0] r : [1, 0]

Fig. 4: Calling relabeled closure

When the program writes to the reference (r := upg 15 H), the closure from
l-uwrite is triggered, causing l in the shared model frame to be updated to H,
which can be seen in Figure 5. Note that the pointer to the model frame created
from the call to the wrapped f is removed from the model frame stack. This
ensures any subsequent calls to the wrapped f, as well as any created wrappers
will not be able to use that model frame, as it belongs only to the first call to

12

x ÞÑ L

l :: H
r :: refpl, lq
f :: xÑ py Ñ l, rq

LModel

1

0

let (g, r) = lib f 10

in r := upg 15 H;

g 20

Program

fun f x =

let r = ref x

in (\y. !r, r)

Library

Stacks: :ρ : [0] f : [0] g : [1, 0] r : [1, 0]

Fig. 5: Writing to r

y ÞÑ L

l :: H
r :: refpl, lq
f :: xÑ py Ñ l, rq

x ÞÑ L

LModel

2

1

0

let (g, r) = lib f 10

in r := upg 15 H;

g 20

Program

fun f x =

let r = ref x

in (\y. !r, r)

Library

Stacks: :ρ : [2, 0] f : [0] g : [1, 0] r : [1, 0]

Fig. 6: Calling g

the wrapped f and the created wrappers within the call. When the function g

is called, it will trigger its l-uclos wrapper and, as can be seen in Figure 6, the
model y Ñ l is used in the l-uclos wrapper for g, with l being used to relabel the
result. Since l was modified by the writing to the reference (Figure 5), the shared
view of the library model state, will make the function g return a secret value.

4 Examples

In the following section we provide some examples to highlight how the language
would interact with common programming techniques. The language used in this
section is an extended version of the language of the paper. The major differences
are the addition of records, functions with multiple arguments, a limited form
of pattern matching, and optional unlabeling. The extensions are all present as
experimental features in the implementation. In all examples, the code above %%

is the program and the code below is the library.

Writebacks Returning two or more results from a function can be done in two
ways: 1) tupling the result, or 2) by using writebacks. When using writebacks
for, e.g., reading a file, the read function is provided a pointer to a place in the
memory where the contents of the file should be stored instead of returning a
pointer to the data.

let buf = ref 0
fun main () = (lib action) buf;

!buf
%%
let data = 42
mod action :: #b -> L {| #b <- H |}
fun action b = b := data; ()

In our language, writebacks can be
modeled by passing program references to
the library as shown to the right. In the
example, the program variable buf is a pro-
gram reference. The reference is passed to
the library function action that writes the result to the buffer. When interacting

13

with a program reference, the reference is given an abstract name (b for buffer
in this case) that the function interacting with the buffer uses to relabel the
interaction.

In case the function used the writeback under secret control, represented by
the model mod action :: #b -> L {| H |- #b <- H |}, the example would
fail due to NSU. The reason being the value the reference buf is pointing to is
public, and is not allowed to change label under secret control. Modifying the
declaration of buf to be let buf = ref (upg 0 H) solves this, as the reference
will point to a secret value.

fun main () =
(lib action) (upg 42 H);
print !(lib errno)

%%
lbl l :: L
mod errno :: ref (l, l)
let errno = ref 0

mod action :: a -> L {| l <- a |}
fun action x = if x == 1

then errno := 1
else ();
()

Library state Libraries often keep state, e.g.,
error codes, computation results or options
set by the program. Typical examples are
the predefined object properties $1,..,$9

from JavaScript RegExp [23].
The example to the right shows how state

can be used to store error information. In
the example, the function action may fail
depending on the value of the parameter.
The reason it failed is stored into the library reference errno, which is modeled
by a security label used to relabel program reads and writes of the reference.
Since the update of errno is conditional, it means that the value of errno is
dependent of the argument of the action function. To model this, the argument
label is stored in the model variable a, which is used to update the security
label of errno. Note that the update of the security label is independent on
whether the operation fails or not. This is needed to ensure that the label of
errno is independent of secrets. The label of errno indicates that the error code
is public. Consider the case where an action sets the error code under secret
control, represented by the following model mod action :: a -> L {| H |- l

<- a |}. If such an action was used our system would halt execution, since the
update of the error code would trigger NSU.

fun main () = (lib set) (upg 42 H);
(lib getAsync) print;
(lib get) ()

%%
lbl l :: L
let buf = ref 0

mod set :: a -> a {| l <- a |}
fun set x = buf := x

mod get :: _ -> l
fun get () = !buf

mod getAsync :: #cb -> L {| #cb l -> _ |}
fun getAsync cb = cb !buf; ()

The one-place buffer In the previ-
ous example, the library state is
exposed to the program, which can
freely read and write to errno. Fre-
quently it is good practice to hide
the internal state of the library and
only allow the program to access it
indirectly via the functions of the
library. We exemplify this by imple-
menting a simple one-place buffer,
seen to the right. While simple, the
example captures the essence of, e.g., buffered file access.

Since there is no model for buf, it is not accessible from the program. Instead,
the state of the library is modeled using the label l. This label is used by the
operations that give the program access to the buffer contents. When setting the

14

value of the buffer via set, the label of the value is used to update the label of
the library state. When reading, either via the synchronous function get or via
the asynchronous function getAsync, l is used to relabel the dereferenced value
from buf. In the synchronous case by relabeling the dereferenced value directly,
and in the asynchronous case by relabeling the parameter to the callback. Note
the use of the wildcard to indicate values that are not important for the model.

Stored callbacks Stored callbacks are callbacks that are saved in the internal state
of the library and used, e.g., to signal the occurrence of some event. A typical
example of stored callbacks is the event handlers present in many languages.

fun main () = lib event := print;
(lib fire) (upg 42 H)

%%
lbl l :: L
mod event :: ref (l, #event^l)
let event = ref 0

mod fire :: a -> L {| #event a -> _ |}
fun fire x = !event x; ()

Consider the program to the right
that registers an event handler by stor-
ing the event handler (print in this
case) in the event reference of the li-
brary. The relabel model of the event

will unlabel the function and give it
the abstract name event.

The event is triggered by calling the fire function, which takes the event
data and passes it to the stored event handler. In the example, the fire function
may be called from the program. In a practical setting, events may be triggered
by interacting with the library (e.g., by adding values to a data structure) or
from the library itself to indicate that certain events, such as mouse movement
or clicks, have occurred.

In the example, it is not possible to fetch the event handler from the library and
call it. In order to allow for this, we have to change the relabel model for the library
reference to relabel read interactions as functions, changing the event model
to be mod event :: ref (a -> b {| #event a -> b |}^l, #event^l). To
understand the new relabel model we must recognize that unlabeled program
functions that are passed back need to be relabeled as any other library function.
In this case, the library function that should be relabeled calls the unlabeled
program function, and needs a corresponding call model. The result is a function
that unlabels its argument into the label variable a, which is used to relabel the
argument before calling the program function. The result of calling the program
function is unlabeled into the label variable b, which in turn is used to relabel
the result of the relabeled function.

5 Case study

lbl l :: L
mod state :: ref (l, l)
let state = ref 1

For case study, we model an API inspired by the fs
API of node.js [10]. In the interest of exposition we
model the file system state as a single label as shown
to the right. The extension of the model to nested records is simple but space
demanding.

Examples of functions in the API are the rmdir function and its synchronous
sibling rmdirSync. Both will, given a path, remove the folder pointed to by the
path. In addition, rmdir also takes a callback that is called with an error if the
removal of the folder pointed to by the path fails.

15

mod rmdirSync :: a -> l + a {| l <- a |}
mod rmdir :: (a, #cb) -> L {| l <- a, #cb (l + a) -> b |}

We use the name a to represent the path and the abstract name cb to represent
the callback. From a modeling standpoint, we need to ensure that the level of
the path is propagated to the state, since removing the folder influences the
file system state. We can see this in the effect constraint l <- a, where the
label of the path is propagated to the label of the state. The success of the
operation is depending on the library state and the security label of the path, l
+ a. Where rmdirSync returns the result, rmdir communicates the result to the
callback as an argument, #cb (l + a). The immediate return value of the latter
is undefined, regardless of the outcome of the operation and hence labeled L.

A more complex function in the API is createWriteStream that returns a
record. Calling createWriteStream with a path and an optional argument that
defines options (e.g. the encoding) returns a WriteStream.

mod createWriteStream :: (a, b)
-> { path : a

, bytesWritten : a + b + l
, open : #op -> L {| #op (a + b + l) -> o |}
, close : #cl -> L {| #cl (a + b + l) -> c |}
}

The WriteStream has four parts; the fields path and bytesWritten, as well as
the events open and close. For the model of the returned record, the property
path is modeled by the argument a, which is the label of the path. The property
bytesWritten, which corresponds to the amount of bytes written so far, is
modeled as the least upper bound of a, b and l, i.e., the path, the options and
the current library state. The events are modeled as functions that accept (and
store) callbacks — the event handler — as modeled by the properties open and
close. When the stream is opened or closed, the path, the options and the
current library state all influence the parameter to those callbacks.

To contrast the case study with the examples, note that Section 4 makes the
assumption that the source code of the library is available (albeit not supporting
the labeled semantics) whereas this section makes the assumption it is not. Both
cases are common, and can be modeled in our approach. In case the source code
is indeed available an interesting line of future work is to look at the possibilities
of automatically deducing models, e.g., using something similar to summary
functions [26].

6 Correctness

The correctness of the language is complicated by the fact that it is parameterized
over a library model that defines how to marshal values between the program
and the library. Since we make no assumption on the implementation language
of the library or the availability of the source code we cannot reason about the
correctness of the model w.r.t. the library. Instead we assume the correctness of
library models in terms of three hypotheses used in the noninterference proof.
The low-equivalence definition, the model hypotheses and more information on
the proof can be found in the full version of the paper [27].

16

We prove noninterference assuming that the library model correctly models
the library as the preservation of a low-equivalence relation under execution.
Apart from covering a larger language, the proof improves over [17] in two
important aspects: 1) it significantly weakens the model hypothesis, and 2) the
proof has been formalized in Coq [19].

Theorem 1 (Noninterference of labeled execution)

pΓ,Σ1q » pΓ
1, Σ11q ^ ς, Γ |ù pΣ1, eq Ñ pΣ2, v̂q ^

ς, Γ 1 |ù pΣ11, eq Ñ pΣ12, v̂
1q ñ pΓ,Σ2q » pΓ

1, Σ12q ^ v̂ » v̂1

Proof. By mutual induction on labeled and unlabeled evaluation (via u-lclos and
l-uclos). The theorem makes use of confinement, i.e., that evaluation under high
security does not modify the public part of the environment.

7 Related work

Bielova and Rezk present a comprehensive taxonomy of information flow mon-
itors [4]. Some monitors [16,15,14,3] and secure multi-execution [13,12,24,6,20]
mechanisms have been integrated in a browser. Bichhawat et al. instrumented
the WebKit JavaScript interpreter [3]. While taking advantage of the current
optimizations in the interpreter, it loses the differentiation between the program
and library execution. FlowFox [13], which implements secure multi-execution
(SME) [6], modifies the SpiderMonkey engine in two ways: 1) augmenting the
internal objects representing the JavaScript context with a current execution
level, as well as a boolean indicating if SME is active, and 2) augmenting the
internal representation of JavaScript values with a security level. Unfortunately,
API calls are only treated as I/O actions. JSFlow [16] is an information-flow
aware JavaScript interpreter, augmented with security labels on the JavaScript
values. In order to allow for libraries in JSFlow, deep hand-written models must
be used, with reimplementation of the libraries as a result [15]. To allow for
scaling, JSFlow attempts to automatically wrap libraries, albeit in an ad-hoc
manner. While the correctness of simple examples are easy to see, the correctness
and scalability when passing, e.g., functions to and from the library remain
unclear. Bauer et al. [2] developed a light-weight coarse-grained run-time monitor
for Chromium, using taint tracking, to help reasoning about information flow in a
fully fledged browser. In this work, formal models of, e.g., cookies, history and the
document object model (DOM) are defined, as well as event handlers, to model
the browser internals and help prove noninterference. Heule et al. [18] provided a
theoretical foundation for a language-based approach for coarse-grained dynamic
information flow control, that can be applied to any programming language
where external effects can be controlled. A first step for handling libraries in
environments where dynamic information flow control is not possible was taken
by Hedin et al. [17], falling short by not supporting references, and thereby not
allowing for first-class mutable state in combination with higher-order functions.

Findler and Feleisen’s higher-order contracts [9] address the problem of check-
ing contracts at the boundary between statically type-checked and dynamically

17

type-checked code. The problem relates to the problem of interfacing with libraries
where it is impossible to check dynamic information flow control. In particu-
lar, when considering function values crossing the boundary, the compliance of
such function values with their respective contracts is undecidable. Findler and
Feleisen proposed to wrap the function and check the contract at the point where
the function is called. This is comparable to how we handle structured data,
including references and function values. A question for future work is if we can
remove our abstract identifiers for function values and references, and instead
inject the unlabeling/relabeling functionality using proxies, similar to how it is
done in higher-order contract checking [8]. If a contract is violated, the proper
assignment of blame must be given [7,11]. In static information flow checking,
the assignment of blame has been investigated by King et al. for information
flow violations [21]. Although our work can be seen as an application of dynamic
higher-order contract checking for information flow contracts, we do not consider
assigning blame. Indeed, runtime detection of a library which does not obey the
specified contract (i.e. the given model) is not possible in this work.

8 Conclusion

Based on a central idea of a model heap, we have developed a foundation
for information flow tracking in the presence of libraries with side effects in
a language with higher-order functions, first-class state and lazy-marshaling

— three cornerstones of practical libraries. We have implemented a prototype
to verify the examples and performed a larger case study that shows that the
language is able to model key parts of a real file system library. In addition, we
have formalized the language and its correctness proof in Coq.

Future work includes support for model abstraction and application, and de-
pendent models. Thanks to the three cornerstones, we believe modeling JavaScript
objects does not require development of new theory, indicating that it is possible
to use this technique in tools like JSFlow.

Acknowledgments This work was partly funded by the Swedish Foundation for
Strategic Research (SSF) and the Swedish Research Council (VR).

References

1. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.
In PLAS, 2009.

2. L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. Run-time
monitoring and formal analysis of information flows in chromium. In NDSS. The
Internet Society, 2015.

3. A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow control in
webkit’s javascript bytecode. In POST, 2014.

4. N. Bielova and T. Rezk. A taxonomy of information flow monitors. In POST, 2016.
5. D. E. Denning. A lattice model of secure information flow. Commun. ACM,

19(5):236–243, 1976.
6. D. Devriese and F. Piessens. Noninterference Through Secure Multi-Execution. In

S&P, 2010.
7. C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct blame for

contracts: No more scapegoating. In POPL, 2011.

18

8. C. Dimoulas, M. S. New, R. B. Findler, and M. Felleisen. Oh Lord, please don’t let
contracts be misunderstood (functional pearl). In ICFP, 2016.

9. R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP,
2002.

10. File System — Node.js v9.2.0 Documentation. https://nodejs.org/api/fs.html.
accessed: Nov 2017.

11. M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest. In POPL,
2010.

12. W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a Web Browser
with Flexible and Precise Information Flow Control. In CCS, 2012.

13. W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Secure multi-execution
of web scripts: Theory and practice. Journal of Computer Security, 2014.

14. D. Hedin, L. Bello, and A. Sabelfeld. Information-flow security for JavaScript and
its APIs. Journal of Computer Security, 2015.

15. D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking Information
Flow in JavaScript and its APIs. In SAC, 2014.

16. D. Hedin and A. Sabelfeld. Information-Flow Security for a Core of JavaScript. In
CSF, 2012.

17. D. Hedin, A. Sjösten, F. Piessens, and A. Sabelfeld. A principled approach to
tracking information flow in the presence of libraries. In POST, 2017.

18. S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. IFC inside: Retrofitting
languages with dynamic information flow control. In POST, 2015.

19. INRIA. The Coq Proof Assistant. https://coq.inria.fr/. accessed: Nov 2017.
20. V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and Termination-Sensitive

Secure Information Flow: Exploring a New Approach. In S&P, 2011.
21. D. King, T. Jaeger, S. Jha, and S. A. Seshia. Effective blame for information-flow

violations. In FSE, 2008.
22. Mozilla Developer Network. Proxy. https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Global_Objects/Proxy. accessed: Mar 2018.
23. Mozilla Developer Network. RegExp. https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Global_Objects/RegExp. accessed: Mar 2018.
24. W. Rafnsson and A. Sabelfeld. Secure Multi-Execution: Fine-grained,

Declassification-aware, and Transparent. In CSF, 2013.
25. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.

Selected Areas in Communications, 21(1):5–19, Jan. 2003.
26. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

Program Flow Analysis: Theory and Applications, 1981.
27. A. Sjösten, D. Hedin, and A. Sabelfeld. Information Flow Tracking for Side-

effectful Libraries - Full version. http://www.cse.chalmers.se/research/group/

security/side-effectful-libraries/.
28. S. A. Zdancewic. Programming Languages for Information Security. PhD thesis,

Cornell University, 2002.

19

https://nodejs.org/api/fs.html
https://coq.inria.fr/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
http://www.cse.chalmers.se/research/group/security/side-effectful-libraries/
http://www.cse.chalmers.se/research/group/security/side-effectful-libraries/

	Information Flow Tracking for Side-effectful Libraries

