C. Quigg, Gauge theories of the strong, weak, and electromagnetic interactions, 2013.
DOI : 10.1119/1.14334

I. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Reviews of Modern Physics, vol.2, issue.1, p.153, 2014.
DOI : 10.1038/nature03858

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

M. Harao and S. Noguchi, Fault tolerant cellular automata, Journal of Computer and System Sciences, vol.11, issue.2, pp.171-185, 1975.
DOI : 10.1016/S0022-0000(75)80066-3

URL : https://doi.org/10.1016/s0022-0000(75)80066-3

A. Toom, Cellular automata with errors: Problems for students of probability, Topics in Contemporary Probability and Its Applications, pp.117-157, 1995.

A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics, vol.303, issue.1, pp.2-30, 2003.
DOI : 10.1016/S0003-4916(02)00018-0

URL : http://arxiv.org/pdf/quant-ph/9707021

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Non-Abelian anyons and topological quantum computation, Reviews of Modern Physics, vol.105, issue.3, p.1083, 2008.
DOI : 10.1103/PhysRevLett.62.82

URL : http://arxiv.org/pdf/0707.1889

T. Toffoli and N. Margolus, Cellular Automata Machine ? A new Environment for Modelling, 1987.

D. A. Wolf-gladrow, Lattice-gas cellular automata and lattice Boltzmann models: an introduction, 2004.
DOI : 10.1007/b72010

URL : http://cds.cern.ch/record/1691467/files/9783540669739_TOC.pdf

P. Arrighi, S. Facchini, and M. Forets, Discrete Lorentz covariance for quantum walks and quantum cellular automata, New Journal of Physics, vol.16, issue.9, p.93007, 2014.
DOI : 10.1088/1367-2630/16/9/093007

URL : http://iopscience.iop.org/article/10.1088/1367-2630/16/9/093007/pdf

E. Formenti, J. Kari, and S. Taati, On the hierarchy of conservation laws in a cellular automaton, Natural Computing, vol.97, issue.4, pp.1275-1294, 2011.
DOI : 10.2307/2324578

URL : https://hal.archives-ouvertes.fr/hal-01311512

V. Salo and I. Trm, Color Blind Cellular Automata, Lecture Notes in Computer Science, p.139154, 2013.
DOI : 10.1007/978-3-642-40867-0_10

D. Molfetta, G. Brachet, M. Debbasch, and F. , Quantum walks in artificial electric and gravitational fields, Physica A: Statistical Mechanics and its Applications, vol.397, pp.157-168, 2014.
DOI : 10.1016/j.physa.2013.11.036

P. Arnault, D. Molfetta, G. Brachet, M. Debbasch, and F. , Quantum walks and non-Abelian discrete gauge theory, Physical Review A, vol.94, issue.1, p.12335, 2016.
DOI : 10.1103/PhysRevA.92.040302

URL : https://hal.archives-ouvertes.fr/hal-01554164

D. Molfetta, G. Pérez, and A. , Quantum walks as simulators of neutrino oscillations in a vacuum and matter, New Journal of Physics, vol.18, issue.10, p.103038, 2016.
DOI : 10.1088/1367-2630/18/10/103038

URL : http://iopscience.iop.org/article/10.1088/1367-2630/18/10/103038/pdf

S. J. Willson, Computing fractal dimensions for additive cellular automata, Physica D: Nonlinear Phenomena, vol.24, issue.1-3, pp.190-206, 1987.
DOI : 10.1016/0167-2789(87)90074-1

S. Chandrasekharan and U. J. Wiese, Quantum link models: A discrete approach to gauge theories, Nuclear Physics B, vol.492, issue.1-2, pp.455-471, 1997.
DOI : 10.1016/S0550-3213(97)80041-7

URL : http://arxiv.org/pdf/hep-lat/9609042

E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S. Montangero, Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation, Physical Review Letters, vol.7, issue.20, 2014.
DOI : 10.1103/PhysRevLett.112.120406

URL : http://arxiv.org/pdf/1312.3127

P. Silvi, E. Rico, T. Calarco, and S. Montangero, Lattice gauge tensor networks, New Journal of Physics, vol.16, issue.10, p.103015, 2014.
DOI : 10.1088/1367-2630/16/10/103015

URL : http://iopscience.iop.org/article/10.1088/1367-2630/16/10/103015/pdf

F. J. Wegner, Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters, Journal of Mathematical Physics, vol.12, issue.10, p.22592272, 1971.
DOI : 10.1103/PhysRevLett.17.913

V. V. Kornyak, Discrete Dynamics: Gauge Invariance and Quantization, International Workshop on Computer Algebra in Scientific Computing, pp.180-194, 2009.
DOI : 10.1007/978-1-4684-9458-7

URL : http://arxiv.org/pdf/0906.0718v2.pdf

P. Arrighi, V. Nesme, and R. Werner, One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations, International Conference on Language and Automata Theory and Applications, pp.64-75, 2008.
DOI : 10.1007/978-3-540-88282-4_8

URL : http://arxiv.org/pdf/0711.3517

C. Itzykson and J. B. Zuber, Physics Today, vol.37, issue.9, 2006.
DOI : 10.1063/1.2916419

F. Strocchi, An introduction to non-perturbative foundations of quantum field theory, 2013.
DOI : 10.1093/acprof:oso/9780199671571.001.0001