W. Beasley, A. Mcwilliam, A. Aitkenhead, R. Mackay, and C. Rowbottom, The suitability of common metrics for assessing parotid and larynx autosegmentation accuracy, J. Appl. Clin. Med. Phys, vol.17, p.5889, 2016.

M. Cardoso, M. Clarkson, G. Ridgway, M. Modat, F. N. Ourselin et al., LoAd: a locally adaptive cortical segmentation algorithm, NeuroImage, vol.56, pp.1386-97, 2011.
DOI : 10.1016/j.neuroimage.2011.02.013

URL : http://europepmc.org/articles/pmc3554791?pdf=render

M. Cardoso, K. Leung, M. Modat, S. Keihaninejad, D. Cash et al., STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation Med, Image Anal, vol.17, pp.671-84, 2013.

M. Cardoso, M. Modat, R. Wolz, A. Melbourne, D. Cash et al., Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion, IEEE Trans. Med. Imaging, vol.1, pp.34-1976, 2015.
DOI : 10.1109/tmi.2015.2418298

URL : http://doi.org/10.1109/tmi.2015.2418298

N. Chung, L. Ting, W. Hsu, L. Lui, and P. Wang, Impact of magnetic resonance imaging versus CT on nasopharyngeal carcinoma: primary tumor target delineation for radiotherapy Head Neck, vol.26, pp.241-247, 2004.
DOI : 10.1002/hed.10378

URL : http://www.sbccp.org.br/arquivos/hn_03-2004_impact_of_magnetic_resonance_imaging.pdf

M. Clements, N. Schupp, M. Tattersall, A. Brown, and R. Larson, Monaco treatment planning system tools and optimization processes, Med. Dosim, vol.43, pp.106-113, 2018.
DOI : 10.1016/j.meddos.2018.02.005

M. Conson, L. Cella, R. Pacelli, M. Comerci, R. Liuzzi et al., Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: from atlas to dose-volume histograms, Radiother. Oncol, vol.112, pp.326-357, 2014.

J. Daisne and A. Blumhofer, Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation, Radiat. Oncol, vol.8, p.154, 2013.

L. Dice, Measures of the amount of ecologic association between species Ecology, vol.26, pp.297-302, 1945.

P. Dirix, K. Haustermans, and V. Vandecaveye, The value of magnetic resonance imaging for radiotherapy planning Seminars in, Radiat. Oncol, vol.24, pp.151-160, 2014.

J. Edmund and T. Nyholm, A review of substitute CT generation for MRI-only radiation therapy, Radiat. Oncol, vol.12, p.28, 2017.

A. Eldesoky, Dosimetric assessment of an Atlas based automated segmentation for loco-regional radiation therapy of early breast cancer in the Skagen Trial 1: a multi-institutional study Clin, Transl. Radiat. Oncol, vol.2, pp.36-40, 2017.

B. Emami, A. Sethi, and G. Petruzzelli, Influence of MRI on target volume delineation and IMRT planning in nasopharyngeal carcinoma, Int. J. Radiat. Oncol. Biol. Phys, vol.57, pp.481-489, 2003.

E. Faggiano, C. Fiorino, E. Scalco, S. Broggi, M. Cattaneo et al., An automatic contour propagation method to follow parotid gland deformation during head-and-neck cancer tomotherapy, Phys. Med. Biol, vol.56, pp.775-91, 2011.
DOI : 10.1088/0031-9155/56/3/015

B. Fallone, B. Murray, S. Rathee, T. Stanescu, S. Steciw et al., First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system, Med. Phys, vol.36, pp.2084-2092, 2009.
DOI : 10.1118/1.3125662

K. Fritscher, M. Peroni, P. Zaffino, M. Spadea, R. Schubert et al., Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours, Med. Phys, vol.41, p.51910, 2014.

X. Han, M. Hoogeman, P. Levendag, L. Hibbard, D. Teguh et al., Atlas-based auto-segmentation of head and neck CT images MICCAI, LNCS, vol.5242, pp.434-475, 2008.
DOI : 10.1007/978-3-540-85990-1_52

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-540-85990-1_52.pdf

S. Hissoiny, B. Ozell, H. Bouchard, and P. Després, GPUMCD: a new GPU-oriented Monte Carlo dose calculation platform, Med. Phys, vol.38, pp.754-64, 2011.

H. Duc and A. , Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer, Med. Phys, vol.42, pp.5027-5061, 2015.

M. Hunt, A. Jackson, A. Narayana, and N. Lee, Geometric factors influencing dosimetric sparing of the parotid glands using IMRT, Int. J. Radiat. Oncol. Biol. Phys, vol.66, pp.296-304, 2006.

M. Köhler, T. Vaara, M. Grootel, R. Hoogeveen, R. Kemppainen et al., MR-only simulation for radiotherapy planning treatment planning White Paper: Philips MRCAT for Prostate Dose Calculations Using only MRI Data, pp.1-16, 2015.

L. Macchia, M. Fellin, F. Amichetti, M. Cianchetti, M. Gianolini et al., Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer Radiat. Oncol, vol.7, p.160, 2012.

J. Lagendijk, B. Raaymakers, C. Van-den-berg, M. Moerland, M. E. Philippens et al., MR guidance in radiotherapy Phys. Med. Biol, vol.59, pp.349-369, 2014.

G. Liney, Technical Note: experimental results from a prototype high-field inline MRI-linac, Med. Phys, vol.43, pp.5188-94, 2016.

P. Metcalfe, G. Liney, L. Holloway, A. Walker, M. Barton et al., The potential for an enhanced role for MRI in radiation-therapy treatment planning Technol, Cancer Res. Treat, vol.12, pp.429-475, 2013.

M. Modat, D. Cash, P. Daga, G. Winston, J. Duncan et al., Global image registration using a symmetric block-matching approach, J. Med. Imaging, vol.1, p.24003, 2014.

M. Modat, G. Ridgway, Z. Taylor, M. Lehmann, J. Barnes et al., Fast free-form deformation using graphics processing units Comput, Methods Prog. Biomed, vol.98, pp.278-84, 2010.

S. Mutic and J. Dempsey, The ViewRay system: magnetic resonance-guided and controlled radiotherapy, Semin. Radiat. Oncol, vol.24, pp.196-205, 2014.

B. Nelms, W. Tomé, R. G. Wheeler, and J. , Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.82, pp.368-78, 2012.

T. Nyholm and J. Jonsson, Counterpoint: opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow, Semin. Radiat. Oncol, vol.24, pp.175-80, 2014.

V. Pekar, A. S. Qazi, and A. , Head and neck auto-segmentation challenge: segmentation of the parotid glands MICCAI 2010: a Grand Challenge for the Clinic, pp.273-80, 2010.

A. Qazi, V. Pekar, J. Kim, J. Xie, and S. Breen, Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach, Med. Phys, vol.38, p.6160, 2011.

B. Raaymakers, Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept, Phys. Med. Biol, vol.54, pp.229-266, 2009.

C. Rasch, R. Steenbakkers, I. Fitton, J. Duppen, P. Nowak et al., Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer, Radiat. Oncol, vol.5, p.21, 2010.

M. Schmidt and G. Payne, Radiotherapy planning using MRI, Phys. Med. Biol, vol.60, pp.323-61, 2015.

R. Sims, A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck, Radiother. Oncol, vol.93, pp.474-482, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00616090

C. Spearman, Spearman's rank correlation coefficient, Am. J. Psychol, vol.15, pp.72-101, 1904.

Y. Sun, Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy, Radiother. Oncol, vol.110, pp.390-397, 2014.

D. Teguh, Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/ mastication) structures in the head and neck, Int. J. Radiat. Oncol. Biol Phys, vol.81, pp.950-957, 2011.

S. Tsuji, A. Hwang, V. Weinberg, S. Yom, J. Quivey et al., Dosimetric evaluation of automatic segmentation for adaptive IMRT for head-and-neck cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.77, pp.707-721, 2010.

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based bias field correction of MR images of the brain, IEEE Trans. Med. Imaging, vol.18, pp.885-96, 1999.

H. Veeraraghavan, N. Tyagi, M. Hunt, L. N. Deasy, and J. , SU-F-303-16: Multi-atlas and learning based segmentation of head and neck normal structures from multi-parametric MRI, Med. Phys, vol.42, p.3541, 2015.

S. Vinod, M. Jameson, M. M. Holloway, and L. , Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies, Radiother. Oncol, vol.121, pp.169-79, 2016.

P. Voet, M. Dirkx, D. Teguh, M. Hoogeman, P. Levendag et al., Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis, Radiother. Oncol, vol.98, pp.373-380, 2011.

K. Wardman, R. Prestwich, M. Gooding, and R. Speight, The feasibility of atlas-based automatic segmentation of MRI for H&N radiotherapy planning, J. Appl. Clin. Med. Phys, vol.17, pp.146-54, 2016.

S. Warfield, K. Zou, and W. Wells, Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE Trans. Med. Imaging, vol.23, pp.903-924, 2004.

L. Welsh, Prospective, longitudinal, multi-modal functional imaging for radical chemo-IMRT treatment of locally advanced head and neck cancer: the INSIGHT study, Radiat. Oncol, vol.10, p.112, 2015.

X. Yang, N. Wu, G. Cheng, Z. Zhou, D. Yu et al., Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.90, pp.1225-1258, 2014.