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On the postulation of lines and a fat line

Thomas Bauer, Sandra Di Rocco, David Schmitz, Tomasz Szemberg, Justyna Szpond

Abstract

In the present note we show that the union of r general lines and one fat
line in P3 imposes independent conditions on forms of sufficiently high degree d,
where the bound is independent of the number of lines. This extends former
results of Hartshorne and Hirschowitz on unions of general lines, and of Alad-
poosh on unions of general lines and one double line.
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1 Introduction

Let X ⊂ Pn be a closed subscheme defined over an algebraically closed field K of
characteristic zero. The Hilbert function of X encodes a number of properties of
X and has been classically an object of vivid research in algebraic geometry and
commutative algebra. We first recall the definition.

Definition 1.1 (Hilbert function). The Hilbert function of a scheme X ⊂ Pn(K) is

HFX : Z 3 d→ dimK[S(X)]d ∈ Z,

where S(X) denotes the graded homogeneous coordinate ring of X.

It is well known that the Hilbert function becomes eventually (i.e., for large d) a
polynomial. We denote the Hilbert polynomial of X by HPX . Whereas the Hilbert
polynomial can be (in principle) computed algorithmically, the Hilbert function is
more difficult to compute. For some varieties, like Pn, the Hilbert function is equal
to the Hilbert polynomial, but this behaviour is rare. The next simplest behaviour
occurs for subschemes with bipolynomial Hilbert function.

Definition 1.2 (Bipolynomial Hilbert function). Following [5] we say that X has a
bipolynomial Hilbert function if

HFX(d) = min {HPPn(d),HPX(d)} (1)

for all d > 1.

In other words, X has a bipolynomial Hilbert function if X ⊂ Pn imposes the
expected number of conditions on forms of arbitrary degree d > 1. Essentially by
definition, a scheme consisting of general points in Pn has bipolynomial Hilbert
function. An analogous result for X consisting of r general lines in Pn with n > 3
has been proved by Hartshorne and Hirschowitz in [10, Theorem 0.1]. A new proof
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has been announced recently by Aladpoosh and Catalisano [3]. Recently Carlini,
Catalisano and Geramita [7] showed that if X consists of r general lines and one
general fat point, then, up to a short list of exceptions in P3, X has bipolynomial
Hilbert function, see also [2] and [4].

Aladpoosh in [1] has proved recently that also schemes consisting of general lines
and one double line have bipolynomial Hilbert function, with the exception of one
double line and two simple lines in P4 imposing dependent conditions on forms of
degree 2. She also conjectured [1, Conjecture 1.2] that the same holds true for r
general lines and one fat flat of arbitrary dimension. In the present note we provide
evidence supporting this conjecture for a fat line of arbitrary multiplicity m. Our
main result is the following.

Main Theorem. Let m > 1 be a fixed integer. Then for d > d0(m) := 3
(
m+1

3

)
, the

Hilbert function of a subscheme X ⊂ P3 consisting of r > 0 general lines and one
line of multiplicity m (i.e. defined by the m-th power of the ideal of a line) satisfies
formula (1).

In other words, a general fat line and an arbitrary number of general lines with
multiplicity 1 impose independent conditions on forms of degree d > d0(m) (see
Theorem 4.1).

It follows from the Serre Vanishing Theorem [11, Theorem 1.2.6] that for any
subscheme X ⊂ Pn, there exists a bound d0(X) such that X imposes independent
conditions on forms of degree d > d0(X). The point here is that we obtain an explicit
bound that depends only on the multiplicity of the fat line and is independent of
the number of reduced lines.

We will set up the proof in a way which employs the general strategy of Hartshorne
and Hirschowitz [10] and Carlini, Catalisano and Geramita [7]. This amounts to work
inductively by constructing a suitable sequence of generic subschemes Z0, Z1, . . . ,
along with suitable specializations Z ′i of Zi. The starting scheme Z0 consists of the
lines in the theorem plus a number of generic points. The essential difficulty in this
strategy lies in the choice of the intermediate schemes Zi and their specializations Z ′i.
In our approach this is achieved by using intermediate schemes that contain, apart
from disjoint lines and points, also crosses and so-called zig-zags (see Def. 2.4).

2 Preliminaries and auxiliary results

We begin by recalling a formula for the number of conditions, c(n,m, d), imposing
the vanishing of a form of degree d > m to the order m along a line in Pn :

c(n,m, d) =
m(nd+ 2n+m−mn− 1)

n(n− 1)

(
n+m− 2

m

)
. (2)

For a proof see e.g. [8, Lemma 2.1]. Note that

c(n, 1, d) = d+ 1

for all n > 1.
In the next Lemma we present a useful formula relating some of numbers c(n,m, d).

Lemma 2.1. For all positive integers n,m, d we have

c(n,m, d) = c(n,m− 1, d− 1) + c(n− 1,m, d).
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Proof. This is a straightforward computation.

In P3 the formula (2) reduces to

c(d,m) = c(3,m, d) =
1

6
m(m+ 1)(3d+ 5− 2m).

Our approach to the Main Theorem uses the specialization method. This em-
ploys the semicontinuity Theorem [9, Theorem III.12.8] in the following way:

Let f : X → B be a projective morphism of noetherian schemes and let F be a
coherent sheaf on X, flat over B. The vanishing h0(Xb,Fb) = 0 for some b implies
then the vanishing h0(Xb′ ,Fb′) = 0 for all b′ in a neighborhood of b.

In our situation, with B = K this means concretely that if h0(Pn,OPn(d)⊗ IZb
) = 0

for a (special) subscheme Zb, then h0(Pn,OPn(d)⊗IZb′ ) = 0 for a (general) subscheme
Zb′ such that Zb and Zb′ vary in a flat family over K.

We are going to use and generalize the notion of sundials following the ideas of
Carlini, Catalisano and Geramita, see [6, Sections 2,3] for definitions and motiva-
tions.

Definition 2.2 (Sundials and crosses). A sundial in Pn is the limiting subscheme
obtained by a collision of two skew lines (hence spanning a P3 ⊂ Pn) moving in a
one-dimensional family. It has a nonreduced structure in the collision point which
can be thought of as a vector generating the P3 mentioned above together with the
plane spanned by the two intersecting lines.

A union of two lines in Pn intersecting in a single point is called a cross. A cross
is hence a sundial with the reduced structure.

Carlini, Catalisano and Geramita proved in [5, Lemma 2.5] that there exists a
flat family g : W → K of schemes in Pn, with n > 3 such that a general member
Wt ⊂W is a union of two disjoint lines, whereas the special fiber W0 is a sundial. As
this property is central to our argument, we recall briefly how W can be obtained.
It is enough to consider it in the projective space of dimension 3.

Construction 2.3. In P3 with homogeneous coordinates (x : y : z : w), let M be
the line defined by the ideal I(M) = 〈z, w〉 and let Lt be lines given by the ideals
I(Lt) = 〈y, z − tx〉. For t 6= 0 let Wt = M ∪ Lt. Intersecting the defining ideals we
get Jt = 〈yw, txw−zw, yz, txz−z2〉 as the ideal of Wt. Thus the limiting subscheme
W0 is given by the ideal J0 = 〈yw, zw, yz, z2〉. The primary decomposition of J0 is

J0 = 〈z, w〉 ∩ 〈y, z〉 ∩ 〈y, z2, w〉,

so that the scheme structure at the intersection point P = (1 : 0 : 0 : 0) of the lines
M and L0 is non-reduced.

It is easy to see that J0 can be also written down as

J0 = I(M) ∩ I(L0) ∩ I(P )2,

which is in accordance with [6, Definition 3.7].

It is a crucial point in our proof of the Main Theorem to use the following
generalization of the sundial idea.

Definition 2.4 (Zig-zag). A zig-zag of length z is the limiting subscheme obtained
by a collision of an ordered set of z general lines L1, L2, . . . , Lz in the following way:
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• the line L2 intersects L1;

• the line L3 intersects L2 in a point different from L2 ∩ L1;

• and so on, i.e., Li+1 intersects Li in a point different from Li ∩ Li−1, for
i 6 z − 1.

We assume that there are no other intersection points among the lines but those
listed above. A zig-zag of length z has thus (z − 1) singular points.

A reduced zig-zag is a zig-zag with reduced structure, i.e., it has no embedded
points.

Thus a sundial is just a zig-zag of length 2 and a cross is a reduced zig-zag of
length 2.

Figure 1 shows a zig-zag of length 7. Note that the lines in the figure are all
skew but the ones indicated in the figure, which means there are no other intersection
points but those indicated in this figure. The intersection points are embedded points
as explained in Construction 2.3.

L1

L2

L3

L4

L5

L6 L7

Figure 1: A zig-zag of length 7

Lemma 2.5. For an integer z > 2, there exists a flat family {Xλ}λ∈K of schemes
in Pn, with n > 3 such that a general member of {Xλ}λ∈K is a union of z disjoint
lines and the special fiber is a zig-zag of length z.

Proof. The proof is a straightforward generalization of the argument in [5, Lemma
2.5].

Zig-zags are useful in our approach because of the following fact.

Lemma 2.6. Let S be a zig-zag of length z in P3 formed by lines L1, . . . , Lz. Let
Q be a smooth quadric in P3 such that all singular points of S lie on Q but none of
the lines in S is contained in Q. Then the colon ideal

J = IS : IQ

defines the reduced zig-zag V (J) = L1 ∪ . . . ∪ Lz.

Proof. Again straightforward.

Apart from the semicontinuity, the residual exact sequence and Castelnuovo’s in-
equality are key ingredients in the proof. We discuss them now.
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Definition 2.7 (Trace and residual scheme). Let Y be a divisor of degree e in Pn
and let Z ⊂ Pn be a closed subscheme. Then the subscheme Z ′′ = TrY (Z) defined
in Y by the ideal

IZ′′,Y = (IY + IZ) /IY ⊂ OY

is the trace of Z on Y .
The colon ideal IZ′ = (IZ : IY ) ⊂ OPn defines Z ′ = ResY (Z), the residual scheme

of Z with respect to Y .

One has the following residual exact sequence

0 −→ IZ′(−Y ) −→ IZ −→ IZ′′,Y −→ 0 , (3)

where IW is the sheafification of the ideal IW . Twisting (3) by OPn(d) we get

0 −→ OPn(d− e)⊗ IResY (Z) −→ OPn(d)⊗ IZ −→ OY (d)⊗ ITrY (Z) −→ 0. (4)

Taking then the long cohomology sequence of (4) we obtain the following statement,
which is called Castelnuovo’s inequality, see e.g. [6, Lemma 3.3].

Lemma 2.8 (Castelnuovo’s inequality). Let Y ⊂ Pn be a divisor of degree e and let
d > e be an integer. Let Z ⊂ Pn be a closed subscheme. Then

h0(Pn,OPn(d)⊗ IZ) 6 h0(Pn,OPn(d− e)⊗ IResY (Z)) + h0(Y,OY (d)⊗ ITrY (Z)). (5)

We call the space H0(Pn,OPn(d − e) ⊗ IResY (Z)) the residual linear system of
H0(Pn,OPn(d)⊗ IZ) with respect to Y and H0(Y,OY (d)⊗ ITrY (Z)) the trace linear
system of H0(Pn,OPn(d)⊗ IZ) on Y .

3 Nonspeciality of certain linear series on P1 × P1

In the proof of the Main Theorem we will consider trace linear systems on a smooth
quadric in P3. This section serves as a preparation of relevant results on linear
systems on a smooth quadric in P3 identified with P1 × P1. Special linear systems
with general points of multiplicity at most 3 on P1 × P1 have been classified by
Lenarcik in [12]. Here we recall a part of [12, Theorem 2] relevant in our situation.

Lemma 3.1. Let Z be the fat point scheme in P1 × P1 defined by the ideal

IZ = I(P1) ∩ . . . ∩ I(Pp) ∩ I(Q1)2 ∩ . . . ∩ I(Qq)
2,

where P1, . . . , Pp, Q1, . . . , Qq are general points in P1 × P1. Let 0 6 a 6 b be non-
negative integers. The linear system

H0(P1 × P1,OP1×P1(a, b)⊗ IZ)

is special if and only if one of the following cases holds

• a = 0, p+ 2q 6 b and q > 1,

• a = 2, p = 0, b = q − 1 and q is odd.

Using this result, we prove now an auxiliary postulation statement for higher
multiplicities:
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Lemma 3.2. Given an integer m > 2 let k be an integer with k >
(
m+1

3

)
. Then

a scheme composed by 2 general points P1, P2 taken with multiplicity m imposes
independent conditions on linear systems on P1 × P1 of bidegree (a, b) if a 6 b,
a > k − 1, a > 0 and b > 3k.

Proof. For m = 2 the assertion for arbitrary k >
(
m+1

3

)
follows from Lemma 3.1.

Indeed, the case a = 0 is excluded by our assumption and the case a = 2 is also
excluded, since in our situation q = 2.

We proceed by induction on m and k. Let m > 2 and k >
(
m+1

3

)
be fixed

and assume that the assertion holds for all m′ < m and all k′ >
(
m′+1

3

)
. Let

s = (a + 1)(b + 1) − 2
(
m+1

2

)
and let Q1, . . . , Qs be s general points on P1 × P1. It

is enough to show that there is no divisor of bidegree (a, b) which passes through
Q1, . . . , Qs and additionally through the points P1, P2 with multiplicity m. It suffices
to prove this claim for a particular position of points Q1, . . . , Qs.

To this end let C be a smooth curve of bidegree (1, 1) passing through P1 and P2.
Thus C is a smooth rational curve. Let t = a+b−2m+1. By above assumptions this
is a non-negative integer. We specialize now the points Q1, . . . , Qt onto the curve
C leaving the points Qt+1, . . . , Qs as general points on P1 × P1, hence not on C.
Assume to the contrary that there is a divisor Γ such that multPi Γ > m for i = 1, 2
and multQj Γ > 1 for j = 1, . . . , s. Then C must be a component of Γ, because
(Γ · C) = a+ b. But the trace of Γ on C has at least 2 points of multiplicity m and
other t reduced points with 2m + t = a + b + 1. The residual divisor Γ′ = Γ − C
has bidegree (a − 1, b − 1), passes through the points P1 and P2 with multiplicity
m− 1 and also passes through the points Qt+1, . . . , Qs. Since s− t = ab− 2

(
m
2

)
, the

existence of Γ′ is excluded by our induction assumption. This concludes the proof.

4 The proof of the Main Theorem

In this section we will prove the Main Theorem, which is equivalent to the following
statement.

Theorem 4.1 (Maximal rank property). For a subscheme X ⊂ P3 consisting of
a general line of multiplicity m and an arbitrary number r of general lines, the
restriction map

H0(P3,OP3(d))→ H0(X,OX(d))

has maximal rank for all d > d0(m) = 3
(
m+1

3

)
.

As pointed out in the introduction, we will employ the general strategy of
Hartshorne and Hirschowitz [10, Theorem 1.1]. Specifically, we will proceed in-
ductively along a suitable sequence of subschemes Z0, Z1, . . . , for which we choose
suitable specializations Z ′0, Z

′
1, . . . . Subschemes consisting of general lines, a fat line

and additional points are unfortunately too simple for the specialization process.
Our idea is to allow instead some intermediate schemes Z = Z(m, r, s, q, z) consist-
ing of one general line of multiplicity m, r general lines, s general crosses, q general
points and a reduced zig-zag of length z (along with particular specializations Z ′ of
Z, which will be introduced in Definition 4.4).

We now set up some notation that will be useful for the remainder of the paper.
We denote by

L(k, ε;m, r, s, q, z) = L(d;Z) = H0(P3,OP3(d)⊗ IZ)
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the linear system of polynomials in P3 of degree d = 3k + ε, with ε ∈ {0, 1, 2}
vanishing along the subscheme Z. One defines the virtual dimension of L(d;Z) to
be:

vdim(L(d;Z)) =

(
d+ 3

3

)
− c(d,m)− r(d+ 1)− s(2d+ 1)− q − (zd+ 1).

Similarly we will write

Λ((a, b); p, pd, pm,m) = Λ((a, b); Ω) = H0(P1 × P1,OP1×P1(a, b)⊗ IΩ)

to indicate the linear system on P1 × P1 of polynomials of bidegree (a, b) vanishing
along the subscheme Ω = Ω(p, pd, pm,m) consisting of p general points, pd general
double points and pm general points of multiplicity m. In our considerations pm is
either 0 or 2, depending on whether we specialize the fat line onto the quadric or
not. We define the virtual dimension of Λ((a, b); Ω) as

vdim(Λ((a, b); Ω)) = (a+ 1)(b+ 1)− p− 3pd −
(
m+ 1

2

)
pm.

Given m > 1 and d > d0(m) = 3
(
m+1

3

)
there exist unique integers r(d,m) > 0

and 0 6 q(d,m) 6 d such that

HPP3(d) = c(d,m) + r(d,m)(d+ 1) + q(d,m). (6)

So HPP3(d) is the virtual number of conditions that one m-fold line, r(d,m) generic
ordinary lines, and q(d,m) generic points impose.

Remark 4.2. Concretely, we have

r(d,m) =

⌊
1

d+ 1

((
d+ 3

3

)
− 1

6
m(m+ 1)(3d+ 5− 2m)

)⌋
and

q(d,m) =

(
d+ 3

3

)
− 1

6
m(m+ 1)(3d+ 5− 2m)− (d+ 1)r(d,m).

In particular,

• for d = 3k

r(d,m) =
3

2
k2 +

5

2
k + 1−

(
m+ 1

2

)
and q(d,m) = 2

(
m+ 1

3

)
,

• for d = 3k + 1

r(d,m) =
3

2
k2 +

7

2
k + 2−

(
m+ 1

2

)
and q(d,m) = 2

(
m+ 1

3

)
,

• for d = 3k + 2

r(d,m) =
3

2
k2 +

9

2
k + 3−

(
m+ 1

2

)
and q(d,m) = k + 1 + 2

(
m+ 1

3

)
.

The following theorem (to be proved in Subsection 4.1) implies the Main Theo-
rem.
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Theorem 4.3. Let d > d0(m) = 3
(
m+1

3

)
and let Z = Z(m, r(d,m), 0, q(d,m), 0), or

Z = Z(m, r(d,m) + 1, 0, 0, 0). Let further Q be some smooth quadric. Then there
exists a sequence Z = Z0, Z1, . . . , Zu of schemes Zi = Z(mi, ri, si, qi, zi) together with
specializations Z ′i such that the following statements hold for each i = 0, . . . , u− 1

(1) Zi+1 = ResQ(Z ′i);

(2) h0(Q,OQ(d− 2i)⊗ ITrQ(Z′i)
) = 0,

and such that Zu satisfies the conditions

(i) Zu = Z(mu, r(d− 2u,mu), 0, q(d− 2u,mu), 0), or
Zu = Z(mu, r(d− 2u,mu) + 1, 0, 0, 0);

(ii) d− 2u > d0(mu);

(iii) mu ∈ {m− 1,m− 2, 1, 0}.

Proof of Theorem 4.1. We proceed by induction on m. The base case m = 1 has
been proved for all d > 0 = d0(1) in [10] and the base case m = 2 by Aladpoosh [1]
for all d > 3 = d0(2).

Consider now m > 3. For d > d0(m) > 4 it suffices to prove the bijectivity of
the restriction map in the case of schemes Z = Z(m, r(d,m), 0, q(d,m), 0), and the
injectivity in the case of schemes Z = Z(m, r(d,m) + 1, 0, 0, 0). This amounts in
either case to proving the identity

dim(L(d;Z)) = 0 .

Theorem 4.3 together with Castelnuovo’s inequality yields

dim(L(d;Z)) 6 dim(L(d− 2u;Zu)) +
u−1∑
i=0

h0(Q,OQ(d− 2i)⊗ ITrQ(Z′i)
)

= dim(L(d− 2u;Zu)) .

The latter must be zero since Zu satisfies the induction hypothesis.

4.1 Proof of Theorem 4.3

In order to prove Theorem 4.3, we will need the next lemma describing which schemes
result from certain specializations.

Definition 4.4. LetQ be a smooth quadric in P3. We denote byR(δ, `, `s, `z, t, ts, tz)
the specialization Z ′ of Z = Z(m, r, s, q, z) given by assuming the following lines to
be disjoint lines belonging to the same ruling of Q:

• δ m-fold lines (here δ will be either 0 or 1);

• ` ordinary lines;

• `s lines from `s crosses (one line from each cross);

• `z = b z2c lines from the reduced zig-zag of length z,

and assuming furthermore
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• t among the q points to be general points on Q,

• 2ts of the r lines to form ts sundials whose intersection with Q is a zero-
dimensional scheme containing the singular points of the sundials,

• tz +1 of the lines to form one zig-zag whose zero-dimensional intersection with
Q contains all tz singular points.

Lemma 4.5. Let Z ′ be the specialization R(δ, `, `s, `z, t, ts, tz) of the scheme Z =
Z(m, r, s, q, z). Then

ResQ(Z ′) = Z(m− δ, r − `+ `s + (z − `z)− 2ts − (tz + 1), s− `s + ts, q − t, tz + 1)

and

TrQ(Z ′) = D+ Ω(2r− 2`− 2`z − 3`s − 2ts − 2tz + t+ 4s+ z + γ, ts + tz, 2− 2δ,m),

where D is a divisor on Q consisting of δ lines of multiplicity m, with δ ∈ {0, 1},
and `+ `s + `z reduced lines, all contained in the same ruling on Q.

Here γ =

{
0, if `z = 0,
1, if `z > 0.

Proof. The argument amounts just in counting the various objects to which the
specialization applies and which it results. We omit the simple details.

Now we turn to the proof of Theorem 4.3. The particular sequence of subschemes
differs according to the divisibility of d by 3. In order to simplify the notation we
denote the relevant linear series by

B(k, ε,m) = L(k, ε;m, r(3k + ε,m), 0, q(3k + ε,m), 0);

I(k, ε,m) = L(k, ε;m, r(3k + ε,m) + 1, 0, 0, 0).

As the proof is technically quite involved, we start by outlining the overall course of
the argument: The proof consists in a number of cases, in each of which an initial
system L0 will yield a residual system Lu through a sequence of reduction steps with
intermediate systems

L0,L1, . . . ,Lu,

according to the plan shown in Table 1.
The intermediate systems Li will be constructed as residual systems from suit-

ably chosen schemes Z ′i as

Li+1 := L(d− 2i− 2; ResQ(Z ′i)) ,

giving on the quadric the trace systems

Λi+1 := Λ((d− 2i, d− 2i); TrQ(Z ′i)) .

4.1.1 The bijective cases

With d = 3k + ε, the initial system in every case is

L(k, ε;m, r(3k + ε,m), 0, q(3k + ε,m), 0).
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The system yields through the system

L0 a sequence of length Lu

u

B(k, 0,m) 1 B(k − 1, 1,m− 1)

B(k, 1,m) 2 B(k − 1, 0,m− 1)

B(k, 2,m) 1 B(k, 0,m− 1)

I(k, 0,m) 2 I(k − 2, 2,m− 2)

I(k, 1,m) 1 I(k − 1, 2,m− 1)

I(k, 2, 3`) 3`− 1 B(k − 2`+ 1, 1, 1)

I(k, 2, 3`+ 1) 3`+ 1 B(k − 2`, 0, 0)

I(k, 2, 3`+ 2) 3`+ 1 B(k − 2`, 0, 1)

Table 1: Initial systems and systems resulting from reduction steps

Case B(k, 0,m). We specialize only once, and we pick

Z ′0 = R(1, 2k + 1−m, 0, 0,m(m− 1), 0, 0).

By Lemma 4.5, we obtain the trace system

H0(OQ(d)⊗ ITrQ(Z′)) = Λ((d, d− (2k + 1)); 2r − 2(2k + 1−m) +m(m− 1), 0, 0,m)

which is of virtual dimension

(3k + 1)k − (2r(3k,m)− 2(2k + 1−m) +m(m− 1)) = (3k + 1)k − (3k + 1)k = 0.

As only reduced general points are involved, this system is non-special, so its actual
dimension is also zero. This shows that condition (2) in Theorem 4.3 is fulfilled.
The residual system is

L1 = L(k − 1, 1;m− 1, r(3(k − 1) + 1,m− 1), 0, q(3(k − 1) + 1,m− 1), 0)

= B(k − 1, 1,m− 1)

by Lemma 4.5. Note that the subscheme Z1 := ResQ(Z ′0) satisfies conditions (i)–(iii)
of Theorem 4.3.

Case B(k, 1,m). In this case we use two specializations. First set

Z ′0 = R(1, 2k + 1−m, 0, 0,m(m− 1), 2k, 0),

resulting in the residual system

L1 = L(k − 1, 2;m− 1,
3

2
k2 − 5

2
k + 1− 1

2
m2 +

1

2
m, 2k,

1

3
m3 −m2 +

2

3
m, 0)

and the trace system

Λ1 = Λ((k, 3k + 1); 3k2 − k + 2, 2k, 0,m),
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which is, by Lemma 3.1, a zero-dimensional system. Then we set

Z ′1 = R(0, 1, 2k, 0, 0, 0, 0)

and obtain the residual system

L2 = L(k−1, 0;m−1, r(3(k−1),m−1), 0, q(3(k−1),m−1), 0) = B(k−1, 0,m−1),

and the trace system

Λ2 = Λ((k − 2, 3k − 1); 3k2 − 3k −m2 +m, 0, 2,m− 1).

Applying Lemma 3.2, we obtain dim(Λ2) = 0.

Case B(k, 2,m). In this case we use the specialization

Z ′0 = R(1, 2k + 2−m, 0, 0, k + 1 +m(m− 1), 0, 0).

We obtain

L1 = L(k, 0;m− 1, r(3k,m− 1), 0, q(3k,m− 1), 0) = B(k, 0,m− 1)

and
Λ1 = Λ((k, 3k + 2); 3k2 + 6k + 3, 0, 0,m)

which is of dimension 0.

4.1.2 The injective cases

With d = 3k + ε, the initial state in every case now is

L0 = L(k, ε;m, r(3k + ε,m) + 1, 0, 0, 0).

Case I(k, 0,m). We have L0 = L(k, 0;m, r(3k,m) + 1, 0, 0, 0) so that

vdim(L0) = −3k − 1 +
1

3
m(m− 1)(m+ 1) < 0

for d = 3k > d0(m) = 3
(
m+1

3

)
. We apply the specialization

Z ′0 = R(1, 2k + 1−m, 0, 0, 0, 0,m(m− 1)− 2).

By Lemma 4.5 the trace system is

Λ1 = Λ((3k, k − 1); 2(r(3k,m) + 1− (2k + 1−m)−m(m− 1) + 2),m(m− 1)− 2, 0,m).

It is easy to see that Λ1 has non-positive virtual dimensions for d > d0(m), and thus
the actual dimension is zero by Lemma 3.1. Hence the quadric is a component of
L0 and the residual system is

L1 = L(k − 1, 1;m− 1,
3

2
k2 +

1

2
k + 2− 3

2
m2 +

3

2
m, 0, 0,m2 −m− 1).

The second specialization is

Z ′1 = R(1, 2k + 1−m− (
1

2
m(m− 1)− 1), 0,

1

2
m(m− 1)− 1, 0, 0, 0).
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Therefore, Lemma 4.5 implies that the trace system is now

Λ2 = Λ((3k − 2, k − 2); 3k2 − 3k + 2− 2m2 + 4m, 0, 0,m− 1).

By Lemma 3.1 again, its dimension is zero, so that the quadric turns out to be also
a fixed component of L1. Note that we have the identity

r(3k,m) + 1− (2k + 1−m)− (2k + 1−m) = r(3(k − 2) + 2,m− 2) + 1.

Hence the final residual system is

L2 = L(k − 2, 2;m− 2, r(3(k − 2) + 2,m− 2) + 1, 0, 0, 0) = I(k − 2, 2,m− 2).

Case I(k, 1,m). Here L0 = L(k, 1;m, r(3k + 1,m) + 1, 0, 0, 0), which has virtual
dimension

vdim(L0) = −3k − 2 +
1

3
m(m− 1)(m+ 1) < 0.

We apply the specialization

Z ′0 = R(1, 2k + 2−m, 0, 0, 0, 0, 0)

which by the identity

r(3k + 1,m) + 1− (2k + 2−m) = r(3(k − 1) + 2,m− 1) + 1

yields

L1 = L(k − 1, 2;m− 1, r(3(k − 1) + 2,m− 1) + 1, 0, 0, 0) = I(k − 1, 2,m− 1)

as the residual system and

Λ1 = Λ((k − 1, 3k + 1); 3k2 + 3k + 2−m2 +m, 0, 0,m)

as the trace system. Its virtual dimension is

vdim(Λ1) = −k − 2 +m2 −m < 0,

so dim(Λ1) = 0.

Case I(k, 2,m). In this case we will employ the novel machinery introduced in
Sect. 2, because specializing to lines on a conic and sundials seems not to suffice.
Apart from using zig-zags this case is also considerably more complicated in that it
decomposes into three subcases, each of which in turn requires a number of reduc-
tion steps. The division into subcases is determined by the divisibility of m by 3,
which is a direct consequence of the chosen specializations. The particular choice of
reductions is far from obvious and can in fact be considered to be the core innovation
of this note.

We have L0 = L(k, 2;m, r(3k + 2,m) + 1, 0, 0, 0) and

vdim(L0) = −2k − 2 +
1

3
m(m− 1)(m+ 1) < 0.

In each case the first specialization is

Z ′0 = R(1, 2k + 2−m, 0, 0, 0, 0, k +m(m− 1)− 1).
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It results in

L1 = L(k, 0;m− 1,
3

2
(k2 + k −m2 +m) + 2, 0, 0, k +m2 −m).

In subsequent steps we work, for p = 2, . . . ,m− 1, with the specializations

Z ′p−1 = R(1, 2k + 2−m−
⌊
p− 1

3

⌋
−
⌊
tzp−1 + 1

2

⌋
, 0,

⌊
tzp−1 + 1

2

⌋
, 0, 0, tzp),

where the number tzp depends on the divisibility of p by 3:

tzp =

{
k + pm(m− p) + 1

3p(p− 1)(p+ 1)− 2p+ 1 if p ≡ 1, 2

pm(m− p) + 1
3p(p− 1)(p+ 1)− 2p+ 2p3 if p ≡ 0

(mod 3).

The definition of the numbers tzp is governed by the requirement that the trace
system on Q is of the virtual (and hence by Lemma 3.1 also the actual) dimension
0.

We conclude the proof by explaining in detail the final reductions in each of the
subcases.

Subcase I(k, 2,m = 3`). In this case we consider the sequence Z0, Z1, . . . , Zm−2

defined above and use as a final step Zm−1 = ResQ(Z ′) for

Z ′ = R(1, 2k + 2−m− (`− 1)−
⌊
tzm−2 + 1

2

⌋
+ 1, 0,

⌊
tzm−2 + 1

2

⌋
, 0, 0, 0).

The final residual system is

Lm−1 = L(k − 2`+ 1, 1; 1, r(3k + 2, 3`) +
21

2
`2 − 23

2
`+ 3− 6k`+ 2k, 0, 0, 0).

Since

r(3k + 2, 3`) +
21

2
`2 − 23

2
`+ 3− 6k`+ 2k = r(3(k − 2`+ 1) + 1, 1)

and q(3(k − 2`+ 1) + 1, 1) = 0 we have

Lm−1 = B(k − 2`+ 1, 1, 1).

The final trace system is

Λm−1 = Λ((k−2`, 3k−6`+6); 2r(3k+2, 3`)−12k`−16`+21`2 +3k+3−9`3, 0, 0, 2),

which has virtual dimension −2k − 2 + 1
3m(m− 1)(m+ 1) < 0.

Subcase I(k, 2,m = 3`+1). Consider the sequence Z0, Z1, . . . , Zm−1 defined above
and use as a final step Zm = ResQ(Z ′) for

Z ′ = R(1, 2k + 2−m− `−
⌊
tzm−1 + 1

2

⌋
+ 1, 0,

⌊
tzm−1 + 1

2

⌋
, 0, 0, 0).

The final residual system is

Lm = L(k − 2`, 0; 0, r(3k + 2, 3`+ 1) +
21

2
`2 − 1

2
`− 1− 6k`− 2k, 0, 0, 0)
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which thanks to the identities

r(3k + 2, 3`+ 1) +
21

2
`2 − 1

2
`− 1− 6k`− 2k = r(3(k − 2`), 0)

and q(3(k−2`), 0) = 0 equals the system B(k−2`, 0, 0), as required. The final trace
system is

Λm = Λ((k−2`−1, 3k−6`+2); 2r(3k+2, 3`+1)−12k`−4k−9`3+12`2+`−2, 0, 0, 1).

Also in this case we have

vdim(Λm) = −2k − 2 +
1

3
m(m− 1)(m+ 1) < 0.

Subcase I(k, 2,m = 3`+2). Use as in the first subcase the sequence Z0, Z1, . . . , Zm−2

defined above and use as a final step Zm−1 = ResQ(Z ′) for

Z ′ = (1, 2k + 2−m− `−
⌊
tzm−2 + 1

2

⌋
+ 1, 0,

⌊
tzm−2 + 1

2

⌋
, 0, 0, 0).

The final residual system is

Lm−1 = L(k − 2`, 0; 1, r(3k + 2, 3`+ 2) +
21

2
`2 +

5

2
`− 6k`− 2k, 0, 0, 0)

with

r(3k + 2, 3`+ 2) +
21

2
`2 +

5

2
`− 6k`− 2k = r(3(k − 2`), 1)

and q(3(k−2`), 1) = 0, so we have Lm−1 = B(k−2`, 0, 1). The final trace system is

Λm−1 = Λ((k−2`−1, 3k−6`+2); 2r(3k+2, 3`+2)−12k`−4k−9`3+3`2−2`, 0, 0, 2).

Its dimension is zero since

vdim(Λm−1) = −2k − 2 +
1

3
m(m− 1)(m+ 1) < 0.

5 Final remarks

We have developed a software to handle calculations necessary here. See [13] for
a Maple core file and a file containing an explicit example explaining how to use
our program. The software has proved indispensable in order to manipulate sets of
data and to discover general patterns leading to suitable specializations. Using this
software we were not able to find any systems in the range d < d0(m) for which the
maximal rank statement in Theorem 4.1 would fail. We therefore expect that the
statement holds in these cases as well:

Conjecture 5.1 (Maximal Rank Conjecture). The restriction maps in Theorem 4.1
have maximal rank for all d > 1.

We hope that with some modifications, the software mentioned above might
prove useful in similar situations, in particular might help to advance towards the
proof of Aladpoosh’s Conjecture. We also expect that our results can be generalized
to projective spaces of arbitrary dimension. This is a subject of ongoing research.
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