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Algorithms for Tight Spans and Tropical Linear Spaces

Simon Hampe®!*, Michael Joswig”?* Benjamin Schréter??*
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Abstract

We describe a new method for computing tropical linear spaces and more
general duals of polyhedral subdivisions. This is based on an algorithm of
Ganter for finite closure systems.

Keywords: Tropical linear spaces, Tight spans, Closure Systems,
polymake
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1. Introduction

Tropical linear spaces are among the most basic objects in tropical geome-
try [MS15, Chapter 4]. In combinatorial terms they form polyhedral com-
plexes which are dual to regular matroid subdivisions of hypersimplices.
Such subdivisions are characterized by the property that each cell is the
convex hull of characteristic vectors of the bases of a matroid. Here the
hypersimplices correspond to the uniform matroids. Research on matroid
subdivisions and related objects goes back to Dress and Wenzel [DW92] and
to Kapranov [Kap93]. Speyer instigated a systematic study in the context
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of tropical geometry [Spe0§|, while suitable algorithms have been developed
and implemented by Rincén [Rinl3].

Here we present a new combinatorial algorithm for computing tropical
linear spaces, which are not necessarily realizable. This implemented in the
software system polymake [GJ00]. Moreover, we report on computational
experiments. Our approach has two key ingredients. First, our method
is completely polyhedral — in contrast with Rincén’s algorithm [RinI3],
which primarily rests on exploiting matroid data. Employing the polyhe-
dral structure has the advantage that this procedure naturally lends itself
to interesting generalizations and variations. In particular, this includes
tropical linear spaces corresponding to non-trivially valuated matroids. Sec-
ond, our method fundamentally relies on an algorithm of Ganter [Gan87] for
enumerating the closed sets in a finite closure system; cf. [GO16, §2.2] This
procedure is a variant of breadth-first-search in the Hasse diagram of the
poset of closed sets. As a consequence the computational costs grow only
linearly with the number of edges in the Hasse diagram, i.e., the number of
covering pairs among the closed sets. So this complexity is asymptotically
optimal in the size of the output, and this is what makes our algorithm
highly competitive in practice. The challenge is to implement the closure
operator and to intertwine it with the search in such a way that it does not
impair the output-sensitivity.

Kaibel and Pfetsch employed Ganter’s algorithm for enumerating face
lattices of convex polytopes [KP02], and this was later extended to bounded
subcomplexes of unbounded polyhedra [HJP13]. Here this is generalized
further to arbitrary regular subdivisions and their duals. Such a dual has
been called tight span in [HIS12] as it generalizes the tights spans of finite
metric spaces studied by Isbell [Isb64] and Dress [Dre84]. The tight span
of an arbitrary polytopal complex may be seen as a special case of the dual
block complex of a cell complex; e.g., see [Mun84, §64]. From a topological
point of view subdivisions of point configurations are cell decompositions
of balls, which, in turn, are special cases of manifolds with boundary. The
duality of manifolds with boundary is classically known as Lefschetz duality
(e.g., see [Mun84l §70]), and this generalizes Poincaré duality as well as cone
polarity. With an arbitrary polytopal subdivision, ¥, we associate a new ob-
ject, called the extended tight span of X, which contains the tight span, but
which additionally takes duals of certain boundary cells into account. In
general, the extended tight span is only a partially ordered set. If, however,
> is regular, then the extended tight span can be equipped with a natural
polyhedral structure. We give an explicit coordinatization. In this way trop-
ical linear spaces arise as the extended tight spans of matroid subdivisions



with respect to those boundary cells which correspond to loop-free matroids.
While a tropical linear space can be given several polyhedral structures, the
structure as an extended tight span is the coarsest. Algorithmically, this has
the advantage of being the sparsest, i.e., being the one which takes the least
amount of memory. In this sense, this is the canonical polyhedral structure
of a tropical linear space.

This paper is organized as follows. We start out with recalling basic facts
about general closure systems with a special focus on Ganter’s algorithm
[Gan87]. Next we introduce the extended tight spans, and this is subse-
quently specialized to tropical linear spaces. We compare the performance
of Rincén’s algorithm [Rinl3] with our new method; see also Section for
further comments. To exhibit one application the paper closes with a case
study on the f-vectors of tropical linear spaces.

2. Closure Systems, Lower Sets and Matroids

While we are mainly interested in applications to tropical geometry, it turns
out that it is useful to start out with some fundamental combinatorics. This
is the natural language for Ganter’s procedure, which we list as Algorithm I]
below.

Definition 2.1. A closure operator on a set S is a function cl : P(S) — P(S)

on the power set of S, which fulfills the following axioms for all subsets
A, BCS:

(i) A Ccl(A) (Extensiveness).
(ii) If A C B then cl(A4) C cl(B) (Monotonicity).
(iii) cl(cl(A)) = cl(A) (Idempotency).

A subset A of S is called closed, if cl(A) = A. The set of all closed sets of S
with respect to some closure operator is called a closure system.

The closed sets of a closure system form a meet-semilattice. In other
words, the set S is closed and the intersection A N B of closed sets A, B is
closed. Conversely, each meet-semilattice arises in this way. See [CMO03| for
a survey on closure systems and lattices.

Classical examples include the following. If the set .S carries a topology
then the function which sends any subset A to the smallest closed set (de-
fined as the complement of an open set) containing A is a closure operator,
called the topological closure. If the set S is equipped with a group structure



then the function which sends any subset A to the smallest subgroup con-
taining A is a closure operator. Throughout the following we are particularly
interested in the case where the set S = [n] := {1,...,n} is finite.

The closed sets of a closure system (.59, cl) are partially ordered by inclu-
sion. The resulting poset is the closure poset induced by (S, cl). The Hasse
diagram of (5, cl) is the directed graph whose nodes are the closed sets and
whose arcs correspond to the covering relations of the closure poset. We
assume that all arcs are directed upward, i.e., toward the larger set. Gan-
ter’s algorithm (cf. Algorithm [1| below) computes the Hasse diagram of a
finite closure system; cf. [Gan87]. As its key property each closed set is
pushed to the queue precisely once, and this entails that the running time
is linear in the number of edges of the Hasse diagram, i.e., the algorithm is
output-sensitive.

Algorithm 1: Produces the Hasse diagram of a finite closure sys-
tem.
Input: A set S and a closure operator cl on S
Output: The Hasse diagram of (S, cl)
H <+ empty graph
Queue « [cl(0)]
add node for closed set cl((})) to H
while Queue is not empty do
N < first element of Queue, remove N from Queue
forall minimal N; := cl(N U {i}), where i € S\N do
if N; does not occur as a node in H yet then
add new node for closed set N; to H
add N; to Queue

add arc from N to N; to H

return H

Remark 2.2. Ganther and Obiedkov present a similar algorithm in [GO16,
§2.2]. Given a closure operator, their algorithm enumerates all closed sets,
due to the method next closure. This algorithm does not provide the inclu-
sion relations among the closed sets, i.e., the edges of the Hasse diagram, in
contrast to Algorithm

Example 2.3. Based on Algorithm |1} Kaibel and Pfetsch [KP02] proposed
a method to compute the face lattice of a convex polytope P. This can be



done in two different ways: A face of a polytope can either be identified by
its set of vertices or by the set of facets it is contained in.

In the first case, the set S is the set of vertices and the closure of a set
is the smallest face containing this set.

In the second case, the set S is the set of facets. Let F© C S. The
intersection of the facets in F' is a face Qr of P. The closure of F' is defined
as the set of all facets which contain Qr. Note that, with this approach,
Algorithm [I] actually computes the face lattice with inverted relations.

In both cases, the closed sets are exactly the faces of P and the closure
operator is given in terms of the vertex—facet incidences.

Example 2.4. Instead of polytopes, one can also compute the face lattice
of a polyhedral fan in much the same manner. The crucial problem is to
define the closure of a set of rays which is not contained in any cone. The
solution to this is to extend the set S to contain not only all rays, but also an
additional artificial element, say co. Now the closure of a set F' C S is either
the smallest cone containing it, if it exists, or the full set S. In particular,
this ensures that the length of a maximal chain in the face lattice of a k-
dimensional fan is always k + 1.

The following class of closure systems is ubiquitous in combinatorics and
tropical geometry. The monographs by White [Whi86] and Oxley [OxI11]
provide introductions to the subject.

Definition 2.5. Let S be a finite set equipped with a closure operator
cl : P(S) — P(S). The pair (5,cl) is a matroid if the following holds in
addition to the closure axioms:

(iv) HAC Sandz € S, and y € cl(AU{z}) \ cl(A), then z € cl(AU {y})
(MacLane-Steinitz Exchange).

This is one of many ways to define a matroid; cf. [OxI11, Lemma 1.4.3]
for explicit cryptomorphisms. The closed sets of a matroid are called flats.

Remark 2.6. For matroids it is not necessary to check for the minimality
of the closed sets N; in Algorithm (1, In view of Axiom (iv) this is always
satisfied. This application of the algorithm also demonstrates that, while
the empty set is typically closed, this does not always need to be the case.
In fact, the closure of the empty set in a matroid is the set of all loops.

For our applications it will be relevant to consider special closure systems
which are derived from other closure systems in the following way. A lower
set A of the closure system (5, cl) is a subset of the closed sets such that for
all pairs of closed sets with A C B we have that B € A implies A € A.



Proposition 2.7. Let (S,cl) be a closure system with lower set A. Then
the function cly which is defined by

cl(A) ifcl(A) €A,

S otherwise

ca(4) = { (1)

s a closure operator on S.

Proof. Extensiveness and idempotency are obvious. We need to show that
monotonicity holds. To this end consider two closed sets A C B C S.
Suppose first that A lies in the lower set A. Then cly(A4) = cl(4) C cl(B) C
cla(B). If, however, A ¢ A, then B ¢ A as A is a lower set. In this case we
have clp(A) = S = clx(B). O

Example 2.8. An unbounded convex polyhedron is pointed if it does not
contain any affine line. In that case the polyhedron is projectively equivalent
to a convex polytope, with a marked face, the face at infinity; see, e.g.,
[JT13, Theorem 3.36]. So we arrive at the situation where we have a convex
polytope P with a marked face F'. Now the set of faces of P which intersect
F trivially forms a lower set A in the closure system of faces of P. In this way
combining Example[2.3|with Proposition[2.7jand Algorithm[I]gives a method
to enumerate the bounded faces of an unbounded polyhedron. Ignoring the
entire set S, which is closed with respect to clp but not bounded, recovers
the main result from [HJP13].

Example 2.9. For a d-polytope P and k < d the faces of dimension at most
k form a lower set. This is the k-skeleton of P.

The closure operators from all examples in this section are implemented
in polymake [GJOO].

3. Extended Tight Spans

It is the goal of this section to describe duals of polytopal complexes in
terms of closure systems. Via Algorithm [I]this gives means to deal with them
effectively. For details on polyhedral subdivisions we refer to the monograph
IDLRS10].

Let P C R? be a finite point configuration, and let ¥ be a polytopal
subdivision of P. That is, ¥ is a polytopal complex whose vertices lie in
P and which covers the convex hull P = conv P. We call the elements
of 3 cells; the set of maximal cells is denoted by ¥X™# and the maximal
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Figure 1: A regular subdivision and its extended tight span for I' = @) and I' = A(X) =
{71,72}, respectively. The latter is marked in gray.

boundary facets (meaning those cells of ¥ contained in the facets of P which
are maximal with respect to inclusion) by Ay. Now we obtain a closure
operator on the set Sy := XY™ U Ay by letting

0 if F =0
P(F) = v 9
cl™(F) {{QGSE‘HUEFUQQ} otherwise . @)

for any F' C Sx,. Note that cl® is basically the same as the dual operator
in Example In fact, the closed, non-empty sets in Sy, correspond to the
cells of ¥, while the poset relation is the inverse containment relation.

Now let I be a collection of boundary faces of ¥. This defines a lower
set Ar for the closure system (Sy, cl*), which consists of all sets F, such
that (,cpo ¢ 7 for any 7 € I'. We will denote the corresponding closure
operator by clf = cl%F and we call the resulting closure system (Ss, clf)
the extended tight span of ¥ with respect to I'.

If ' = Ay, the closed sets are all cells of ¥ which are not contained
in the boundary. This is exactly the tight span of a polytopal subdivision
defined in [HJJS09], which is dual to the interior cells. Note that this can
also be obtained as the closure system of (™%, cl*).

Example 3.1. Let P be {—1,0,1} with the convex hull [-1, 1] and ¥ be its
subdivision into intervals o3 = [-1,0] and o9 = [0, 1], i.e., X™%* = {07, 09}.
The subdivision and its corresponding extended tight spans for I' = () and
I = A(Z) = {{-1},{1}} = {71,72} can be seen in [Figure 1} This example
also demonstrates that we need to declare the closure of the empty set to
be itself to ensure monotonicity.

If the subdivision is regular, i.e., induced by a height function h : P — R,
we can actually coordinatize the extended tight span. Any regular subdi-
vision with fixed height function is dual to a dual complex Ny, which is a



complete polyhedral complex in R%. More precisely, for every point € R?
there is a cell of ¥, consisting of all points p € P which minimize h(p) —p-x.
Points which induce the same cell form an open polyhedral cell and the
topological closures of these cells form the dual complex. It is a well-known
fact that there is a bijective, inclusion-reversing relation between the cells
of ¥ and the cells of Ny;.

In particular, each maximal cell of ¥X™#* is dual to a vertex and every
boundary facet in A(X) is dual to a ray of Nx. Hence, every closed set F' of
(Sy, cl?) corresponds to a polyhedral cell prp and together these cells form
a subcomplex of Ny. More precisely, we denote by

Tser = {pr | F C Sy closed w.r.t. cl%} (3)

the coordinatized extended tight span of ¥ with respect to I'. Its face lattice
is by definition the poset of closed sets of (S, cl¥).

4. Tropical Linear Spaces

In this section we will finally investigate the objects that we are most inter-
ested in: valuated matroids and tropical linear spaces. We prefer to see the
latter as special cases of extended tight spans. Valuated matroids were first
studied by Dress and Wenzel [DW92]; cf. [MS15, Chapter 4] for their role
in tropical geometry.

Let us introduce some notation. For a subset B of [n] of size r, let
e = Zie p €i- For a collection M C ([:f]) of such subsets we let

Py = conv{ep | B€ M} (4)

be the subpolytope of the hypersimplex A(r,n) which is spanned by those
vertices which correspond to bases of M. The following fundamental char-
acterization is known [Edm70), (GGMS8T].

Proposition 4.1. The set M comprises the bases of a matroid if and only
if the vertez—edge graph of the polytope Py is a subgraph of the vertez—edge
graph of A(r,n) or, equivalently, if every edge of Py is parallel to e; — e;
for some i and j.

Throughout the following, let M be (the set of bases of) a matroid on
n elements. In that case Py is the matroid polytope of M. The matroid M
is said to be loop-free if | Jgcpr B = [n]. The rank of M is r, the size of any
basis. If Py is the full hypersimplex, then M = U, , is a uniform matroid.
The above description fits well with our geometric approach. Any function



v: M — R gives rise to a regular subdivision on Py, which we denote by
Y. The pair (M, v) is a valuated matroid if every cell of ¥y, is again a
matroid polytope. Then Xy, is called a matroid subdivision.

Example 4.2. The set M of subsets of {1,2,3,4} with exactly two elements
has cardinality six. Their characteristic vectors are the vertices of a regular
octahedron embedded in 4-space. If we let v be the map which sends five
vertices to 0 and the sixth one to 1, then (M, v) is a valuated matroid.

We will define tropical linear spaces as duals of valuated matroids. To
this end let (M,v) be a valuated matroid of rank r on n elements. For a
vector x € R", we define the set

M, = {Be M |v(B)—ep-x is minimal} . (5)

From the definition of the dual complex in Section [3| we see that the
elements of M, correspond to a cell of ¥js, and thus define a matroid.
Note that for any A € R we clearly have M, = M, 1.

Definition 4.3. The tropical linear space associated with the valuated ma-
troid (M, v) is the set

B(M,v) = {x € R" | M, is loop-free} /R1 . (6)

Note that our definition of a valuated matroid, as well as that of a tropical
linear space are with respect to minimum as tropical addition. Tropical
linear spaces generalize tropicalizations of linear varieties, i.e., the image of
a linear space over a valuated field under its valuation map; cf. [MS15] §4.4].

The following is our main result. While it is easy to prove, it is rele-
vant since it entails a new effective procedure for enumerating the cells of a
tropical linear space via Algorithm

Theorem 4.4. Let I' be the set of boundary faces of ¥ := X, which
correspond to matroids with loops. Then

B(M,v) = Txr/R1 , (7)
where T, r is the coordinatized extended tight span defined in Section @

Proof. Let Ny denote the dual complex of ¥. From our definition it is
immediately clear that B(M,v) is a subcomplex of Ny;/R1. A cell in Ny /R1
lies in B(M,v) if its dual cell in 3 is the matroid polytope of a loop-free
matroid. Since any cell in 3 corresponds to a loop-free matroid, if and only
if it is not contained in a boundary facet of a matroid with loops, the claim
follows. O



We call the resulting polyhedral structure of B(M,v) canonical.

Remark 4.5. Note that one can naturally replace I' by the subset of max-
tmal boundary faces corresponding to matroids with loops. These faces are
defined by the equations x; = 0 for i € [n].

Example 4.6. If the valuation is constant then the matroid subdivision is
trivial. It follows that the dual complex coincides with the normal fan of
the matroid polytope Pys. In this case B(M,v) is the Bergman fan of M,
in its coarsest possible subdivision; cf. [HamI4al for a proof.

The polyhedral complex B(M,v) reflects quite a lot of the combinatorics
of the matroid M. For instance, the rank of M equals dim(B(M,v))+1. If L
is the lineality space of B(M,v), then the number of connected components
of M is dim(L) + 1; cf. [Edm70l [FS05].

4.1. Performance comparison

As mentioned in the introduction, there is an algorithm by Rincén
[Rin13] for computing Bergman fans, i.e., tropical linear spaces with trivial
valuation. An extension which can also deal with trivially valuated arbitrary
matroids which may not be realizable has been implemented in polymake’s
bundled extension a-tint [Haml4b|. It is this implementation we refer to
in the following discussion. The original software TropLi by Rincén only
takes realizable matroids as input.

Table 1: Comparing running times for computing Bergman fans.

(n,r) # matroids Rincén Hasse CH ETS
(6,2) 23 0.0 0.2 0.8 0.0
(6,3) 38 0.0 0.4 1.6 0.0
(7,2) 37 0.0 0.3 1.6 0.0
(7,3) 108 0.0 1.5 5.8 0.2
(8,2) 58 0.0 0.4 1.9 0.0
(8,3) 325 0.3 6.0 21.4 0.8
(8,4) 940 1.8 48.7 86.5 9.2

Rincén’s and our algorithm are very difficult to compare for two reasons.
First of all, a matroid can be encoded in numerous ways. For instance, in
terms of closures, as in Definition [2.5] or in terms of bases, as in Propo-
sition Many further variants exist, and the conversion between these

10



representations is often a non-trivial computational task. Below we will as-
sume that all matroids are given in terms of their bases. The second problem
is that the two algorithms essentially compute very different things. Our al-
gorithm computes the full face lattice of the canonical polyhedral structure
of a tropical linear space. On the other hand, Rincén’s algorithm only com-
putes the rays and the maximal cones of the Bergman fan, albeit in a finer
subdivision. In this setup it is therefore to be expected that our approach is
significantly slower. In particular, to identify the boundary cells (including
the loopfree ones), we need to apply a convex hull algorithm to the matroid
polytope before we can make use of our algorithm. Still, the discussion has
merit when separating the timings for the different steps; cf. Table [I We
compute Bergman fans of all (isomorphism classes of) matroids of a given
rank r on a given ground set [n]| as provided at http://www—imai.is.
s.u-tokyo.ac.jp/~ymatsu/matroid); see also [MMIBI12]. Each ma-
troid is given only in terms of its bases. We first apply Rincén’s algorithm
and then compute the Hasse diagram of the face lattice of the fan as de-
scribed in Example[2.4l For our approach we split the computations into two
steps: First we compute the convex hull of the matroid polytope, displayed
under “CH” and then measure the running time of our closure algorithm
“ETS” (extended tight span) separately. Times were measured on an AMD
Phenom IT X6 1090T with 3.6 GHz using a single thread and polymake
version 3.1. We employed the double description method implemented in the
Parma Polyhedral Library (via polymake’s interface) for computing
the convex hulls [BHZ0S].

The results show that almost all of the time in our algorithm is spent
computing the facets of the matroid polytope. On the other hand, if one
alms at obtaining the same amount of information, i.e., the full face lattice,
for Rincén’s algorithm, this increases the computation time dramatically.
This demonstrates that the finer subdivision produced by this algorithm is
significantly worse in terms of complexity than the canonical subdivision.

We also like to point out that for non-trivial valuations our algorithm
is, to the best of our knowledge, currently the only feasible method for
computing tropical linear spaces.

4.2. Other ways to compute tropical linear spaces

For the sake of completeness we briefly comment on alternatives to comput-
ing with tropical linear spaces.

Let (M,v) be a valuated matroid of rank r on n elements. The asso-
ciated tropical linear space B(M,v) consists of all points z in the (n—1)-
dimensional tropical projective space such that, for any (d+1)-subset 7 of

11
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[n], the minimum of the numbers v(7 \ {7;}) + x,, for i € [d] is attained at
least twice. The latter describes a circuit of (B,v). Dually, the cocircuits
of that valuated matroid arise as follows. For any (d—1)-subset o of [n] let
v(ox*) be the vector in (RU{oo})™ whose jth coordinate is v(c U{j}) and oo
if j € 0. It now follows from a result of Yu and Yuster [YY07, Theorem 16]
that B(M,v) is the tropical convex hull of all its cocircuits; see also [JSY07]
for more details and an application.

This raises the question of how to compute the tropical convex hull of
the cocircuits. First of all, there is more than one possible output format;
cf. [Jos09] for a survey. None of the known methods is very efficient; e.g., see
[JSYQ7, Table 1] for some timings. Even worse, for most families of matroids,
the number of cocircuits grows very quickly with r and n. That is to say,
a tropical convex hull computation on such input is not computationally
feasible under most circumstances.

Dually, the tropical linear space B(M,v) can be written as a tropical
prevariety of linear forms, i.e., as the intersection of tropical hyperplanes
coming from the circuits; cf. [MS15, (4.4.4)]. Assuming that there are about
as many circuits as bases it is possible to apply a dual version of Algorithm ]|
in this setting. Yet, compared with our approach, this is somewhat more in-
volved since each tropical hyperplane needs to be represented as an ordinary
polyhedral complex with ©(n?) many maximal cells.

5. A case study on f-vectors of tropical linear spaces

Throughout the rest of this paper we will restrict ourselves to valuations
of uniform matroids. Equivalently, we study matroid subdivisions of hyper-
simplices (and their lifting functions). Speyer was the first to conduct a
thorough study of the combinatorics of tropical linear spaces [Spe08|. He
conjectured the following.

Conjecture 5.1 (Speyer’s f-vector conjecture). Letn > 1 and 1 < r < n.
Let v be any valuation on U,,. Then the number of (i — 1)-dimensional
bounded faces of B(Uyn,v) is at most ("721) ("7171).

r—i )\ i1

To study this problem, one is naturally interested in some form of moduli
space of all possible valuations on U := U, ,. This role is played by the
Dressian Dr(r,n); see [HJJS09, [HJS12]. It is a subfan of the secondary
fan of Py = A(r,n), consisting of all cones which correspond to matroidal
subdivisions. As a set it contains the tropical Grassmannian TGry(r,n)
for any characteristic p > 0. This is the tropicalization of the ordinary
Grassmannian over an algebraically closed field of characteristic p, and it

12



consists of all cones of the secondary fan which correspond to realizable
valuations on U, i.e., those which can be realized as valuated vector matroids
in characteristic p; see [SS04] and [MSI5, Chapter 4]. However, this inclusion
is generally strict. In fact, the Dressian is not even pure in general.

Remark 5.2. For r = 2, the Dressian Dr(r,n) is equal to the tropical
Grassmannian. Combinatorially, this is the space of phylogenetic trees; e.g.,
see [Kap93, §1.3] and [MS15, §4.3]. For r = 3 and 3 < n < 6, the equality
Dr(r,n) = TGrp(r,n) still holds on the level of sets for each p > 0. This
is trivial for n = 3,4, as there are no non-trivial subdivisions of Py in that
case. For n =5 it follows from duality and the statement for Dr(2,5). The
Dressian Dr(3,6) was computed in [SS04]. Note that, while the Dressian
and the Grassmannian may agree as sets, they can have different polyhe-
dral structures. Understanding the precise relation between these fan struc-
tures is still an open problem for general parameters. The cases (3,7) and
(3,8) are the first where the Dressian differs from the Grassmannian. The
Dressian Dr(3,7) was computed in [HJJS09]. In particular, the possible
combinatorial types of the corresponding tropical planes (and thus, their
possible f-vectors) were listed. The polyhedral fan Dr(3,8) was computed
in [HIST2).

5.1. The Dressian Dr(3,8)

We wish to compute f-vectors of uniform tropical planes in R®/R1, i.e.,
tropical linear spaces corresponding to valuations on Usg. To this end, we
make use of the data obtained in [HJS12], which is available at http://
svenherrmann.net/DR38/dr38.html. There is a natural Sg-symmetry
on the Dressian and the web page provides representatives for each cone
orbit.

We computed tropical linear spaces for each cone by choosing an inte-
rior point as valuation. For the sake of legibility, we only include results
for the maximal cones of the Dressian. There are 14 maximal cones of di-
mension nine and 4734 maximal cones of dimension eight. The full data
can be obtained at http://www3.math.tu-berlin.de/combi/dmg/
data/f vectors Dr38.

Convention. The f-vector of a tropical linear space L is the f-vector of its
canonical polyhedral structure. The bounded f-vector of L is the f-vector
of the bounded part of this structure. All counts are given modulo the
Sg-symmetry on the Dressian.
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Figure 2: The various combinatorial types of bounded parts of tropical linear spaces
corresponding to nine-dimensional cones in the Dressian. Note that all of them share
the same f-vector (13,15,3). The naming convention is P = pentagon, S = square, T =
triangle. The star % indicates where the square has an additional edge attached.
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There is only one bounded f-vector (n — 2,n — 3) for a tropical linear
space that corresponds to a maximal cone in the Dressian Dr(2, n), since this
linear space has the combinatorics of a binary tree with n labeled leaves.
The generic tropical linear spaces in the Dressian Dr(3,6) have a bounded
f-vector which is either (5,4,0) or (6,6,1); see [HJJS09]. In the case of
(3,7) the (generic) bounded f-vectors read (7,6,0), (9,10,2) and (10,12, 3).

Theorem 5.3. Every generic tropical plane in R®/R1 has one of four pos-
sible f-vectors:

> If it corresponds to a nine-dimensional cone in the Dressian, its f-
vector is (13,55,63) and its bounded f-vector is (13,15,3). There are
nine different combinatorial types of such planes; see Figure |3

> If it corresponds to one of the 4734 eight-dimensional maximal cones
in the Dressian, there are three possibilities:

o There are 51 planes with f-vector (13,56,64) and bounded f-
vector (13,16,4).

o There are 1079 planes with f-vector (14,58,65) and bounded f-
vector (14,18, 5).

o There are 3604 planes with f-vector (15,60,66) and bounded f-
vector (15,20, 6).

There are 3013 different combinatorial types of such planes.

The maximal bounded f-vector (15,20, 6) agrees with the upper bound
in Conjecture [5.1}

Remark 5.4. Each of the nine different combinatorial types that correspond
to a nine-dimensional cone contain a vertex (marked in white in Figure ,
which in turn corresponds to the matroid polytope of a parallel extension of
the Fano matroid. This is a certificate that these tropical linear spaces are
not realizable over any field of characteristic greater than two; see [OxI11),
Chapter 6 and Appendix]. Figure |3|illustrates the connected extensions of
the Fano matroid; these are those that are loop-free.

Further computer experiments reveal the following details.

Proposition 5.5. Let p be 0, 3, 5 or 7. Then the intersection of the relative
interior of a cone C' in the Dressian Dr(3,8) with the tropical Grassmannian
TGrp(3,8) is trivial if and only if a subdivision which is induced by a lifting in
the relative interior of C contains the polytope of a Fano matroid extension
as a cell.
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o

Figure 3: The three loop-free extensions of the Fano matroid.

6. Outlook

6.1. Higher Dressians

We have given an algorithm which computes tropical linear spaces for
arbitrary valuations in reasonable time; computing all tropical linear spaces
for Dr(3,8) above only took a few hours on a standard desktop computer.
This indicates that it is feasible to apply this algorithm more ambitiously,
e.g., to Dressians with larger parameters. However, in these cases not much
data is currently available. Computing higher Dressians is a challenging task
in itself.

The next step would be to look at Dr(4,8). While computing the full
Dressian is, at the moment, beyond our means, we can consider the following
construction by Speyer [Spe0§|. Let M be a matroid of rank r on n elements.
We define an associated valuation on U,.,, by

vy (B) :=1r —ranky (B) (8)
where B € ([:‘]) is a basis of the uniform matroid and

rankys(B) = ?3]’\}{‘3 NnB'|} 9)

is the rank of B in M. Speyer showed that the corank indeed defines a
valuation and that the matroid polytope Pys appears as a cell in the induced
regular subdivision.

There are 940 isomorphism classes of matroids of rank four on eight
elements [MMIBI2]; our computation is based on the data from http://
www—imai.ls.s.u-tokyo.ac.jp/~ymatsu/matroid. For computing
the tropical linear spaces given by the valuations defined above we employed
the enriched version available at db.polymake.orqg. This is certainly not
enough to provide a global view on the Dressian Dr(4,8), but it gives us
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a first glimpse of relevant combinatorial features. There are 62 different
bounded f-vectors of such tropical linear spaces, so we cannot list them all.
Also, up to combinatorial isomorphism, there are 465 different subdivisions
of the hypersimplex induced by these matroids. As an example, consider the
matroid M := Uf?é; see [OxI11l, Chapter 4.2] for more on direct sums of ma-
troids. The bounded f-vector of the tropical linear space induced by vy is
(14,24,12,1). In particular, the last two entries already achieve the respec-
tive maxima conjectured by Speyer, which are (20,30,12,1). Experiments
suggests that this is generally true, i.e., if M = Ul%d, then the valuation on
Uq,24 gives a linear space whose bounded f-vector maximizes the last two
entries. Among valuations of the form vy on Ug, the maximal number
of edges is in fact also 24. However, the maximal number of vertices is 15.
This is achieved by the unique matroid with 56 bases and 14 hyperplanes,
i.e., flats of rank three. For experts: This is a sparse paving matroid, which
has the maximal number 16 of cyclic flats among all matroid of rank four
on eight elements.

6.2. Further optimization

Many of the objects considered here, such as polytopes, fans and ma-
troids, exhibit symmetries which are also visible in the corresponding closure
systems. It seems desirable, therefore, to exploit this during the compu-
tation. For every orbit of a closed set, only one representative would be
computed. In a first approach, this could be achieved by considering equiv-
alent sets to be the same in Algorithm I Once, when collecting all minimal
closures cl(N U {i}) and again when checking if N; is already in the graph.
One could then easily recover the list of all closed sets in the end, though re-
constructing the full poset structure (i.e. without symmetry) would require
significant computational work.

As mentioned in the most expensive part in our computations is a
convex hull algorithm for computing the subdivision and the facets of the
matroid polytope. It is known that the facets can be described in terms of
the combinatorics of the matroid; cf. [Edm70, [FFS05]. It is unclear if such a
description can be given for the regular subdivision.
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