M. Centenaro, Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios, IEEE Wireless Communications, vol.23, issue.5, pp.60-67, 2016.
DOI : 10.1109/MWC.2016.7721743

URL : http://arxiv.org/pdf/1510.00620

L. Vangelista, A. Zanella, M. Zorzi, D. Bankov, E. Khorov et al., Long-range IoT technologies: the dawn of LoRa TM [3] The Things Network. [Online] Available: https Mathematical model of LoRaWAN channel access with capture effect, IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). 2017, pp.51-58, 2015.

A. I. Pop, Does Bidirectional Traffic Do More Harm Than Good in LoRaWAN Based LPWA Networks?, GLOBECOM 2017, 2017 IEEE Global Communications Conference, pp.1-6
DOI : 10.1109/GLOCOM.2017.8254509

URL : http://arxiv.org/pdf/1704.04174

F. Van-den-abeele, Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3, IEEE Internet of Things Journal, vol.4, issue.6, pp.2186-2198, 2017.
DOI : 10.1109/JIOT.2017.2768498

C. Goursaud and J. Gorce, Dedicated networks for IoT: PHY / MAC state of the art and challenges, EAI endorsed transactions on Internet of Things, 2015.
DOI : 10.4108/eai.26-10-2015.150597

URL : https://hal.archives-ouvertes.fr/hal-01231221

L. Alliance, LoRaWAN TM 1.1 Specification, 2017.

D. Magrin, M. Centenaro, and L. Vangelista, Performance evaluation of LoRa networks in a smart city scenario, 2017 IEEE International Conference on Communications (ICC), pp.2017-2018
DOI : 10.1109/ICC.2017.7996384

3. , Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT)

L. Alliance, LoRaWAN TM 1.0.2 Specification, 2016.

L. Alliance, LoRaWAN TM 1.1 Regional Parameters, 2017.