H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson et al., Persistence images: a stable vector representation of persistent homology, Journal of Machine Learning Research, vol.18, issue.8, pp.1-35, 2017.

N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society, vol.68, issue.3, pp.337-404, 1950.

C. A. Biscio and J. Møller, The accumulated persistence function, a new useful functional summary statistic for topological data analysis, with a view to brain artery trees and spatial point process applications, Journal of Computational and Graphical Statistics, 2019.

O. Bobrowski, M. Kahle, and P. Skraba, Maximally persistent cycles in random geometric complexes, The Annals of Applied Probability, vol.27, issue.4, pp.2032-2060, 2017.

O. Bobrowski and G. Oliveira, Random ?ech complexes on riemannian manifolds. Random Structures & Algorithms, 2017.
DOI : 10.1002/rsa.20800

S. Boucheron, O. Bousquet, G. Lugosi, and P. Massart, Moment inequalities for functions of independent random variables, The Annals of Probability, vol.33, issue.2, pp.514-560, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00101850

P. Bubenik, Statistical topological data analysis using persistence landscapes, The Journal of Machine Learning Research, vol.16, issue.1, pp.77-102, 2015.

M. Carriere, M. Cuturi, and S. Oudot, Sliced wasserstein kernel for persistence diagrams, Proceedings of the 34th International Conference on Machine Learning, vol.70, pp.664-673, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01203716

F. Chazal, D. Cohen-steiner, L. J. Guibas, F. Mémoli, and S. Y. Oudot, Gromov-hausdorff stable signatures for shapes using persistence, Computer Graphics Forum, vol.28, pp.1393-1403, 2009.
DOI : 10.1111/j.1467-8659.2009.01516.x

URL : https://hal.archives-ouvertes.fr/hal-00772413

F. Chazal, V. De-silva, M. Glisse, and S. Oudot, The structure and stability of persistence modules, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01107617

F. Chazal and V. Divol, The Density of Expected Persistence Diagrams and its Kernel Based Estimation, 34th International Symposium on Computational Geometry, vol.26, p.15, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01716181

F. Chazal, B. T. Fasy, F. Lecci, A. Rinaldo, and L. Wasserman, Stochastic convergence of persistence landscapes and silhouettes, Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p.474, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00923684

F. Chazal and B. Michel, An introduction to topological data analysis: fundamental and practical aspects for data scientists, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614384

Y. C. Chen, D. Wang, A. Rinaldo, and L. Wasserman, Statistical analysis of persistence intensity functions, 2015.

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Stability of persistence diagrams, Discrete & Computational Geometry, vol.37, issue.1, pp.103-120, 2007.
DOI : 10.1145/1064092.1064133

D. Cohen-steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, Lipschitz functions have L p -stable persistence, Foundations of Computational Mathematics, vol.10, issue.2, pp.127-139, 2010.

A. Cuevas, Set estimation: Another bridge between statistics and geometry, Boletín de Estadística e Investigación Operativa, vol.25, pp.71-85, 2009.

J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Mathematics, 1984.

V. Divol and T. Lacombe, Understanding the topology and the geometry of the persistence diagram space via optimal partial transport, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01970466

H. Edelsbrunner and J. Harer, Computational topology: an introduction, 2010.

A. Goel, K. D. Trinh, and K. Tsunoda, Strong law of large numbers for betti numbers in the thermodynamic regime, Journal of Statistical Physics, pp.1-28, 2018.

Y. Hiraoka, T. Shirai, and K. D. Trinh, Limit theorems for persistence diagrams, The Annals of Applied Probability, vol.28, issue.5, pp.2740-2780, 2018.

M. Kahle, Random geometric complexes, Discrete & Computational Geometry, vol.45, issue.3, pp.553-573, 2011.

M. Kahle and E. Meckes, Limit theorems for Betti numbers of random simplicial complexes. Homology, Homotopy and Applications, vol.15, pp.343-374, 2013.

G. Kusano, K. Fukumizu, and Y. Hiraoka, Kernel method for persistence diagrams via kernel embedding and weight factor, Journal of Machine Learning Research, vol.18, issue.189, pp.1-41, 2018.

Y. Lee, S. D. Barthel, P. D?otko, S. M. Moosavi, K. Hess et al., Quantifying similarity of pore-geometry in nanoporous materials, Nature Communications, vol.8, p.15396, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01706966

K. Mcgivney and J. E. Yukich, Asymptotics for Voronoi tessellations on random samples. Stochastic Processes and their Applications, vol.83, pp.273-288, 1999.

T. Nakamura, Y. Hiraoka, A. Hirata, E. G. Escolar, and Y. Nishiura, Persistent homology and many-body atomic structure for medium-range order in the glass, Nanotechnology, vol.26, issue.30, p.304001, 2015.

M. D. Penrose, Random geometric graphs, Oxford Studies of Probability, vol.5, 2003.

M. D. Penrose and J. E. Yukich, Weak laws of large numbers in geometric probability, Annals of Applied Probability, pp.277-303, 2003.

J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, A stable multi-scale kernel for topological machine learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4741-4748, 2015.

L. M. Seversky, S. Davis, and M. Berger, On time-series topological data analysis: New data and opportunities, Computer Vision and Pattern Recognition Workshops (CVPRW), 2016 IEEE Conference on, pp.1014-1022, 2016.

P. Skraba, G. Thoppe, and D. Yogeshwaran, Randomly weighted d? complexes: Minimal spanning acycles and persistence diagrams, 2017.

J. M. Steele, Growth rates of Euclidean minimal spanning trees with power weighted edges, The Annals of Probability, vol.16, issue.4, pp.1767-1787, 1988.

K. D. Trinh, A remark on the convergence of betti numbers in the thermodynamic regime, Pacific Journal of Mathematics for Industry, vol.9, issue.1, p.4, 2017.

C. Villani, Optimal transport: old and new. Grundlehren der mathematischen Wissenschaften, vol.338, 2008.

Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh et al., Topological methods for exploring lowdensity states in biomolecular folding pathways, The Journal of Chemical Physics, vol.130, issue.14, pp.4-614, 2009.

D. Yogeshwaran, E. Subag, and R. J. Adler, Random geometric complexes in the thermodynamic regime. Probability Theory and Related Fields, vol.167, pp.107-142, 2017.

J. E. Yukich, Asymptotics for weighted minimal spanning trees on random points, Stochastic Processes and their Applications, vol.85, issue.1, pp.123-138, 2000.

J. E. Yukich, Probability theory of classical Euclidean optimization problems, 2006.