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Scattering Networks for Hybrid Representation
Learning

Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien, Matthew
Blaschko, Eugene Belilovsky

F

Abstract—Scattering networks are a class of designed Convolutional
Neural Networks (CNNs) with fixed weights. We argue they can serve as
generic representations for modelling images. In particular, by working in
scattering space, we achieve competitive results both for supervised and
unsupervised learning tasks, while making progress towards construct-
ing more interpretable CNNs. For supervised learning, we demonstrate
that the early layers of CNNs do not necessarily need to be learned, and
can be replaced with a scattering network instead. Indeed, using hybrid
architectures, we achieve the best results with predefined representa-
tions to-date, while being competitive with end-to-end learned CNNs.
Specifically, even applying a shallow cascade of small-windowed scat-
tering coefficients followed by 1 × 1-convolutions results in AlexNet ac-
curacy on the ILSVRC2012 classification task. Moreover, by combining
scattering networks with deep residual networks, we achieve a single-
crop top-5 error of 11.4% on ILSVRC2012. Also, we show they can
yield excellent performance in the small sample regime on CIFAR-10
and STL-10 datasets, exceeding their end-to-end counterparts, through
their ability to incorporate geometrical priors. For unsupervised learning,
scattering coefficients can be a competitive representation that permits
image recovery. We use this fact to train hybrid GANs to generate
images. Finally, we empirically analyze several properties related to
stability and reconstruction of images from scattering coefficients.

Index Terms—Scattering transform, Wavelets, Deep neural networks,
Invariance.

1 INTRODUCTION

N ATURAL image processing tasks are high dimensional prob-
lems that require introducing lower dimensional represen-

tations: in the case of image classification, they must reduce the
non-informative image variabilities, whereas for image generation,
it is desirable to parametrize them. For example, some of the
main source of variability are often due to geometrical operations
such as translations and rotations. Then, an efficient classification
pipeline necessarily builds invariants to these variabilities, whereas
mapping to those sources of variabilities is desirable in the context
of image generation. Deep architectures build representations that
lead to state-of-the-art results on image classification tasks [24].
These architectures are designed as very deep cascades of non-
linear end-to-end learned modules [33]. When trained on large-
scale datasets they have been shown to produce representations
that are transferable to other datasets [60], [26], which indicates
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they have captured generic properties of a supervised task that
consequently do not need to be learned. Indeed several works
indicate geometrical structures in the filters of the earlier layers
of Deep CNNs [30], [56]. However, understanding the precise
operations performed by those early layers is a complicated [54],
[40] and possibly intractable task. In this work we investigate if
it is possible to replace these early layers by simpler cascades
of non-learned operators that reduce and parametrize variability
while retaining all the discriminative information.

Indeed, there can be several advantages to incorporating pre-
defined geometric priors via a hybrid approach of combining pre-
defined and learned representations. First, end-to-end pipelines can
be data hungry and ineffective when the number of samples is
low. Secondly, it could lead to more interpretable classification
pipelines, which are amenable to analysis, and permits the per-
formance of parallel transport along the Euclidean group. Finally,
it can reduce the spatial dimensions and the required depth of
the learned modules, improving their computational and memory
requirements.

A potential candidate for an image representation is the SIFT
descriptor [34], which was widely used before 2012 as a feature
extractor in classification pipelines [46], [47]. This representation
was typically encoded via an unsupervised Fisher Vector (FV)
and fed to a linear SVM. However, several works indicate that
this is not a generic enough representation on top of which to
build further modules [32], [6]. Indeed end-to-end learned features
produce substantially better classification accuracy.

A Scattering Transform [36], [11], [49] is an alternative
that solves some of the issues with SIFT and other predefined
descriptors. In this work, we show that contrary to other proposed
descriptors [55], a Scattering Network can avoid discarding in-
formation. Indeed, a Scattering Transform is not quantized, and
the loss of information is avoided thanks to a combination of
wavelets and non linear operators. Furthermore, it is shown in
[42] that a Scattering Network provides a substantial improvement
in classification accuracy over SIFT. A Scattering Transform also
provides certain mathematical guarantees, which CNNs generally
lack. Finally, wavelets are often observed in the initial layers, as
in the case of AlexNet [30]. Thus, combing the two approaches is
natural.

This article is an extended version of [41]. Our main contribu-
tions are as follows. First, we design and develop a fast algorithm
to compute a Scattering Transform to use in a deep learning
context. We demonstrate that using supervised local descriptors
obtained by shallow 1 × 1 convolutions with very small spatial
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window sizes obtains AlexNet accuracy on the ImageNet clas-
sification task (Subsection 4.1). We show empirically that these
encoders build explicit invariance to local rotations (Subsection
4.3). Second, we propose hybrid networks that combine scattering
with modern CNNs (Section 5) and show that using scattering and
a ResNet of reduced depth, we obtain similar accuracy to ResNet-
18 on ImageNet (Subsection 5.1). Then, we study adversarial
examples to the Scattering Transform with a linear classifier.
We then develop a procedure to reconstruct an image from its
scattering representation in Section 3.4 and show that this can be
used to incorporate the scattering transform in a hybrid Generativel
Adversarial Network in Section 6.2. Finally, we demonstrate in
Subsection 5.3 that scattering permits a substantial improvement
in accuracy in the setting of limited data.

Our highly efficient GPU implementation of the scattering
transform is, to our knowledge, orders of magnitude faster than
any other implementations, and allows training very deep net-
works while applying scattering on the fly. Our scattering imple-
mentation1 and pre-trained hybrid models2 are publicly available.

2 RELATED WORK

Closely related to our work, [44] proposed a hybrid representation
for large scale image recognition combining a predefined repre-
sentation and Neural Networks (NN), that uses a Fisher Vector
(FV) encoding of SIFT and leverages NNs as scalable classifiers.
In contrast we use the scattering transform in combination with
convolutional architectures and show hybrid results that well
exceed those of [44].

A large body of recent literature has also considered unsuper-
vised and self-supervised learning for constructing discriminative
image features [3], [18] that can be used in subsequent image
recognition pipelines. However, to the best of our knowledge
on complex datasets such as imagenet these representations do
not yet approach the accuracy of supervised methods or hand-
crafted unsupervised representations. In particular the FV en-
coding discussed above is an unsupervised representation that
has outperformed any unsupervised learned representation on the
imagenet dataset [47].

With regards to the algorithmic implementation of the Scat-
tering Transform, former implementations [11], [1] were only
scaled for CPU as they retain too many intermediate variables,
which can be too large for GPU use. A major contribution of
our work is to propose an efficient approach which fits in GPU
memory, which subsequently allows a much faster computational
time than the CPU implementations. This is essential for scaling
to the ImageNet dataset.

Concurrent to our work the Scattering Transform was also
recently used in a context of generative modeling [2]: it is shown
that by inverting the scattering transform, it is possible to generate
images in a similar fashion as GANs. We however adopt a rather
different approach by building hybrid GANs that directly learn to
generate Scattering coefficients, which we reconstruct back into
images.

3 SCATTERING: A BASELINE FOR IMAGE CLASSI-
FICATION

We now describe the scattering transform and motivate its use as
a generic input for supervised tasks. A scattering network belongs

1. http://github.com/edouardoyallon/pyscatwave
2. http://github.com/edouardoyallon/scalingscattering
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Fig. 1: A scattering network.AJ concatenates the averaged signals
(cf. Section 3.1).

to the class of CNNs whose filters are fixed wavelets [42]. The
construction of this network has strong mathematical foundations
[36], meaning it is well understood, relies on few parameters, and
is stable to a large class of geometric transformations. In general,
the parameters of a scattering transform do not need to be adapted
to the bias of the dataset [42], making its output a suitable generic
representation.

We then propose and motivate the use of supervised CNNs
built on top of the scattering network. Finally we propose super-
vised encodings of scattering coefficients using 1x1 convolutions,
which can retain interpretability and locality properties.

3.1 The Scattering Transform
In this section, we recall the definition of the scattering trans-
form, introduced in [11], and clarify it by illustrating how to
concretely apply it on a discrete image. In general, consider a
signal x(u), with u the spatial position index and an integer
J ∈ N, which is the spatial scale of our scattering transform.
In particular, when x is a grayscale image, we write x[p] its
discretization, where p1, p2 ≤ N . Let φJ be a local averaging
filter with a spatial window of scale 2J (here, a Gaussian smooth-
ing function). We obtain the zeroth order scattering coefficients
S0x(u) = AJx(u) = x ? φJ(2Ju) by applying3 a local
averaging operator AJ , followed by an appropriate downsampling
of scale 2J . The zeroth order scattering transform is approximately
invariant to translations smaller than 2J , but also results in a loss
of high frequencies, which are necessary to discriminate signals. In
our grayscale image example, S0x is a feature map of resolution
N
2J ×

N
2J with a single channel.

A solution to avoid the loss of high frequency information is to
use wavelets. A wavelet is an integrable function with zero mean,
which is localized both in Fourier and space domain [38]. A family
of wavelets is obtained by dilating a complex mother wavelet
ψ (here, a Morlet wavelet) such that ψj,θ(u) = 1

22j ψ(r−θ
u
2j ),

where r−θ is the rotation by −θ, and j ≥ 0 is the scale of the
wavelet. Thus, a given wavelet ψj,θ has its energy concentrated
at a scale j in the angular sector θ. Let L ∈ N be an integer
parametrizing a discretization of [0, 2π]. A wavelet transform is
the convolution of a signal with the family of wavelets introduced
above, followed by an appropriate downsampling:

W1x(j1, θ1, u) = {x ? ψj1,θ1(2j1u)}j1≤J,θ1=2π l
L ,1≤l≤L

Observe that j1 and θ1 have been discretized – the wavelet is
chosen to be selective in angle and localized in the Fourier domain.
With appropriate discretization [42], {AJx,W1x} is approxima-
tively an isometry on the set of signals with limited bandwidth,
which implies that the energy of the signal is preserved. This
operator then belongs to the category of multi-resolution analysis
operators, each filter being excited by a specific scale and angle,
but with the output coefficients not being invariant to translation.

3. In this work, ? denotes convolution, and has higher precedence than
function evaluation.

http://github.com/edouardoyallon/pyscatwave
http://github.com/edouardoyallon/scalingscattering
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To achieve invariance we cannot apply AJ directly to W1x since
it would result in a trivial invariant, namely zero.

To tackle this issue, we first apply a non-linear point-wise
complex modulus to W1x, followed by an averaging AJ , and a
downsampling of scale 2J , which builds a non-trivial invariant.
Here, the mother wavelet is analytic, thus |W1x| is regular [5]
which implies that the energy of |W1x| in the Fourier domain
is more likely to be contained in a lower frequency regime than
W1x. Thus, AJ preserves more energy of |W1x|. It is possible to
define

S1x = AJ |W1|x,

which can also be written as:

S1x(j1, θ1, u) = |x ? ψj1,θ1 | ? φJ(2Ju);

these are the first-order scattering coefficients. Following deep-
learning terminology, each S1x(j1, θ1, ·) can be thought of as a
one channel in a feature map. Again, the use of averaging builds an
invariant to translation up to 2J . In our grayscale image example,
S1x[p] is a feature map of resolution N

2J ×
N
2J with JL channels.

To recover some of the high-frequencies lost due to the
averaging applied on the first order coefficients, we apply again
a second wavelet transform W2 (with the same filters as W1) to
each channel of the first-order scatterings, before the averaging
step. This leads to the second-order scattering coefficients

S2x = AJ |W2||W1|,

which can also be written as

S2x(j1, j2, θ1, θ2, u) = ||x ? ψj1,θ1 | ? ψj2,θ2 | ? φJ(2Ju).

We only compute paths of increasing scale (j1 < j2) because non-
increasing paths have been shown to bear no energy [11]. In our
grayscale image example, S2x[p] is a feature map of resolution
N
2J ×

N
2J with 1

2J(J − 1)L2 channels (one per increasing path).
We do not compute higher order scatterings, because their

energy is negligible [11]. We call Sx(u)(or SJx(u)) the final
scattering coefficient corresponding to the concatenation of the
order 0, 1 and 2 scattering coefficients, intentionally omitting the
path index of each representation. A schematic diagram is shown
in Figure 1. In the case of color images, we apply independently
a scattering transform to each RGB channel of the image, which
means Sx(u) is a feature map with 3×

(
1+JL+ 1

2J(J−1)L2
)

channels, and the original image is down-sampled by a factor 2J

[11].
This representation has been proved to linearize small defor-

mations of images [36], be non-expansive and almost complete
[17], [10], which makes it an ideal input to a deep network
algorithm, which can build invariants to this local variability via
a first linear operator. We discuss its use as an initialization of a
deep network in the next sections.

3.2 Efficient Implementation of Scattering Transforms

The implementation of a Scattering Network must be re-thought to
benefit from GPU acceleration. Indeed, a GPU is a device which
has a limited memory size in comparison with a CPU, and thus it
is not possible to store intermediate computations. In this section,
we show how to solve this problem of memory. We first describe
the naive tree implementation [11], [42] and then our efficient
GPU based implementation.

Modulus

Lowpass
1st wavelet

2nd wavelet

(b) Proposed algorithm

(a) ScatNet algorithm

Fig. 2: Trees of computations for a Scattering Transform. (a)
corresponds to the traversal used in the ScatNet software package
and (b) to our current implementation (PyScatWave).

3.2.1 Tree implementation of computations
We recall the algorithm to compute a Scattering Transform and
its implementation in [11], [1] for order 2 Scattering with a scale
of J and L different orientations for the wavelets. We explicitly
show this algorithm is not appropriate to be scaled on a GPU. It
corresponds to a level order traversal of the tree of computations
of the Figure 2(a). Let us consider again a discretized input signal
x[p] of size N2 which is a power of 2, and a spatial sampling of
1. For the sake of simplicity, we assume that an algorithm such
as a symmetric padding has already been applied to x in order to
avoid boundary effects that are inherent to periodic convolutions.
The filter bank corresponds to JL+ 1 filters:

{ψθ,j , φJ}θ,j≤J .

We only consider periodized filters, e.g.:

ψ̃θ,j(u) =
∑
k1,k2

ψθ,j(u+ (Nk1, Nk2)).

A first wavelet transform must be applied on the input signal of
the Scattering Transform. To this end, (a) a FFT of size N is
applied. Then, (b) JL dot-wise multiplications with the resulting
signal must be applied using the filters in the Fourier domain,
{ ˆ̃
ψθ,l(ω),

ˆ̃
φJ(ω)}. Each of the the resulting filtered x ? ψ̃j,θ[p]

or x ? φ̃J [p] signals must be down-sampled by a factor of 2j or
2J , respectively, in order to reduce the computational complexity
of the next operations. This is performed by (c) a periodization
of the signal in the Fourier domain, which is equivalent to a
down-sampling in the spatial domain, i.e. the resulting signal is
x ? ψ̃j,θ[2

jp] or x ? φ̃J [2Jp]. This last operation will lead to
an aliasing, because there is a loss of information that can not
be exactly recovered with Morlet filters. (a’) An iFFT is then
applied to each of the resulting filtered signals, which are of
size N2

2j , j ≤ J . (d) A modulus operator is applied to each
of the signals, except to the low pass filter because it is a
Gaussian. The set of filters to be reused at the next layer is
{|x ? ψ̃j1,θ1 [2j1p]|}θ1≤L,j1<J,p1≤ N

2j1
,p2≤ N

2j1
plus a low pass

filter.
This requires the storage of Oji,jp = L

∑J−1
j=ji

N2

22jp
+ N2

22J

intermediate coefficients for the first layer, where jp = j1, ji = 0.
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Input size J ScatNetLight (in s) PyScatWave (in s)

32× 32× 3× 128 2 2.5 0.03
32× 32× 3× 128 4 13 0.20
128× 128× 3× 128 2 16 0.26
128× 128× 3× 128 4 52 0.54
256× 256× 3× 128 2 160 0.71
256× 256× 3× 128 3 1.52
256× 256× 3× 128 4 1.73

TABLE 1: Comparison of the computation time of a Scattering
Transform on CPU/GPU. PyScatWave (Algorithm 1) significantly
improves performance in practice.

This step is iterated one more time, on each of the JL wavelet
modulus signals, while only considering increasing paths. This
means a wavelet transform and a modulus applied on a signal
|x ? ψ̃j1,θ1 [2jp]| lead to an additional storage requirement of
Oj1,j2 . Consequently, the total number of coefficients stored for
the second layer of the transform is

∑J−1
j1=0 LO2

j1,j2
Finally,

an averaging is applied on the second order wavelet modulus
coefficients, which leads to a memory usage of J(J−1)

2 L2 N2

22J

additional coefficients. Thus in total, the tree implementation
requires a storage size of

O0,j1 +
J−1∑
j1=0

LO2
j1,j2 +

J(J − 1)

2
L2N

2

22J

The above approach is far too memory-consuming for a GPU im-
plementation. For example, for J = 2, 3, 4, L = 8, andN = 256,
which corresponds to the setting used on our ImageNet exper-
iments, we numerically have approximately 2M, 2.5M, 2.6M
parameters for a single tensor. A parameter is about 4 bytes,
thus an image is about 8MB in the smallest case. In the case of
batches of size 256 with color images, we thus need at least 6GB
of memory simply to store the intermediate tensors used by the
scattering, which does not take in account extra-memory used by
libraries such as cuFFT for example. In particular, this reasoning
demonstrates that a typical GPU with 12GB of memory can not
efficiently process images in parallel with this naive approach.

3.2.2 Memory efficient implementation on GPUs
We now describe a GPU implementation which tries to minimize
the memory usage during the computations. The procedures (a/a’),
(b), (c) and (d) of the previous section can be efficiently imple-
mented entirely on GPUs. They are fast, and can be implemented
in batches, which permits parallel computations of the scattering
representation. This is necessary for deep learning pipelines,
which commonly use batches of data augmented samples.

To this end, we propose to perform an infix traversal of the tree
of computations of the scattering. We introduce {Ũ1

j , Ũ
2
j }j≤J ,

which are two sequences of temporary variables of length
{N2j }j≤J and a vector Ũ0

0 of length N . The total amount of
memory that will be used is at most 5N2. Here, a color image
of size N = 256 corresponds to at most approximately 0.98M
coefficients. It divides the memory usage by at least 2 and permits
us to scale processing to ImageNet. Algorithm 1 presents the
algorithm we used in our implementation, dubbed PyScatWave.
Table 1 demonstrates the speed-up for different values of tensors
on a TitanX, compared with ScatNetLight [42].

We also note that in the case of training hybrid networks it is
possible to store the computed scattering coefficients for a dataset

Algorithm 1: Pseudo-code of the algorithm used in PyScat-
Wave.
1 function Scattering (x, J);

Input : Where x - image, J - scale
Output: scattering(x, J)

2 Ũ0
0 = FFT (x);

3 Ũ1
0 =

ˆ̃
φJ � Ũ0

0 ;
4 S0

Jx = iFFT (periodize(Ũ1
0 , J));

5 for λ1 = (j1, θ1) do
6 Ũ1

0 =
ˆ̃
ψλ1
� Ũ0

0 ;
7 Ũ1

j1
= FFT (|iFFT (periodize(Ũ1

0 , j1)));

8 Ũ2
j1

=
ˆ̃
φJ � Ũ1

j1
;

9 S1
Jx[λ1] = iFFT (periodize(Ũ2

j1
, J));

10 for λ2 = (j2, θ2), j1 < j2 do
11 Ũ2

j1
=

ˆ̃
ψλ2
� Ũ1

j1
;

12 Ũ2
j2

= FFT (|iFFT (periodize(Ũ2
j1
, j2))|);

13 Ũ2
j2

=
ˆ̃
φJ � Ũ2

j2
;

14 S2
Jx[λ1, λ2] = iFFT (periodize(Ũ2

j2
, J));

15 end
16 end

via a cache. In this case, it is possible to obtain a speedup by a large
factor since no extra computations are required to compute the
earlier layers as optimization of the network proceeds. These early
layers are often the most computationally expensive in comparison
with deeper layers.

3.3 Reconstruction from the Scattering Coefficients
Reconstruction of an image from a scattering representation can be
critical for permitting it’s use in applications such as image gener-
ation. It also permits to obtain insights into the representation. We
describe a simple method to reconstruct an image from its order
2 scattering representation. Several works [17], [10] proposed to
synthesize textures and stochastic processes from their expected
scattering coefficients. In the case of stationary processes, the final
local averaging of a scattering transform allows the building of an
unbiased estimator of the expected scattering coefficients, and the
smallest variance is achieved using the largest windows size of
invariance, i.e. the full image. This does not hold in the case of
natural images, which do not correspond to stationary processes,
and thus, global invariance to translation is not desirable because it
loses spatial localization information. We show a straightforward
approach can yield competitive reconstruction.

The method used [10], [9] consists in minimizing the `2
reconstruction error between an input image x and a candidate
x̂:

x̂ = arg inf
y
‖SJx− SJy‖2

This is achieved via a gradient descent, without however any
(known) theoretical guarantees of convergence to the original
signal. Computations are made possible thanks to the auto-
differentiation tool of PyTorch. In this setting, we chose the
optimizer Adam. The initial image is initialized as a white noise
with variance 10−4 and is represented in the YUV space because it
decorrelates approximatively the color channels and the intensity
channels, and we observed it leads to better reconstruction. The
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algorithm converges to a visually reasonable solution after 200
iterations, the loss reaching a plateau, and there is no extra-
regularization or parametrization because empirically this has not
yielded better reconstruction. Results are displayed in Figure 3
for different values of J and an image x of size 2562. For each
reconstruction, we evaluate its quality by computing the relative
error of reconstruction with the original signal err(x), and its
distance in the scattering space err(SJ),

err(x) =
‖x̂− x‖
‖x‖

and err(SJ) =
‖SJ x̂− SJx‖
‖SJx‖

.

We demonstrate good reconstruction in the case of J = 2, 3, 4
and we show that numerically, by J ≥ 5, the obtained images
are rather different from the original image due to the averaging
loss. The attributes that are not well reconstructed are blurry and
not at the appropriate spatial localization, which seems to indicate
they have been lost by the spatial averaging. For J < 7, the
Scattering coefficients are almost identical, however, for J = 5, 6
several corners and borders of the images are not well recovered,
which indicates it is possible to find very different images with
similar scattering coefficients. An open question is to understand
if cascading more wavelet transforms could recover this infor-
mation. For J ≥ 7, the reconstructed signals are very different,
only several textures seem to have been recovered and the color
channels are decorrelated. Furthermore, the case J = 7 exhibits
strong artifacts from the large scale wavelet, which is linked to the
implementation of the wavelet transform.

Due to this lack of localization and ability to discriminate,
in the following sections we combine CNNs with a scattering
transform with scales J < 5, and therefore filters of width less
than 25 = 32 pixels.

3.4 Cascading a Supervised Architecture on Top of
Scattering

We now motivate the use of a supervised architecture on top of a
scattering network. Scattering transforms have yielded excellent
numerical results [11] on datasets where the variabilities are
completely known, such as MNIST or FERET. In these task,
the problems encountered are linked to sample and geometric
variance and handling these variances leads to solving these
problems. However, in classification tasks on more complex image
datasets, such variabilities are only partially known as there are
also non geometrical intra-class variabilities. Although applying
the scattering transform on datasets like CIFAR-10 or CalTech
leads to nearly state-of-the-art results in comparison to other
unsupervised representations, there is a large gap in performance
when comparing to supervised representations [42]. CNNs fill
in this gap. Thus we consider the use of deep neural networks
utilizing generic scattering representations in order to learn more
complex invariances than geometric ones alone.

Recent works [37], [12], [28] have suggested that deep net-
works could build an approximation of the group of symmetries of
a classification task and apply transformations along the orbits of
this group, like convolutions. This group of symmetry corresponds
to some of the non-informative intra class variabilities, which must
be reduced by a supervised classifier. [37] motivates that each layer
corresponds to an approximated Lie group of symmetry, and this
approximation is progressive in the sense that the dimension of
these groups is increasing with depth. For instance, the main linear
Lie group of symmetry of an image is the translation group, R2. In

Original image 2, 7× 10−3, 6× 10−2

3, 7× 10−3, 9× 10−2 4, 7× 10−3, 1.1× 10−1

5, 7× 10−3, 1.4× 10−1 6, 7× 10−3, 1.7× 10−1

7, 1.5× 10−2, 4.0× 10−1 8, 1.0× 10−2, 4.4× 10−1

Fig. 3: Reconstructed images with subcaption indicating
J, err(SJ), err(x). See Section 3.4 for details of the reconstruction
approach.

the case of a wavelet transform obtained by rotation of a mother
wavelet, it is possible to recover a new subgroup of symmetry
after a modulus non-linearity, the rotation SO2, and the group of
symmetry at this layer is the roto-translation group: R2 n SO2. If
no non-linearity was applied, a convolution along R2nSO2 would
be equivalent to a spatial convolution. Discovering explicitly the
next new and non-geometrical groups of symmetry is however a
difficult task [28]; nonetheless, the roto-translation group seems
to be a good initialization for the first layers. In this work, we
investigate this hypothesis and avoid learning those well-known
symmetries.

Thus, we consider two types of cascaded deep networks on
top of scattering. The first, referred to as the Shared Local En-
coder (SLE), learns a supervised local encoding of the scattering
coefficients. We motivate and describe the SLE in the next sub-
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section as an intermediate representation between unsupervised
local pipelines, widely used in computer vision prior to 2012, and
modern supervised deep feature learning approaches. The second,
referred to as a hybrid CNN, is a cascade of a scattering network
and a standard CNN architecture, such as a ResNet [24]. In the
sequel we empirically analyse hybrid CNNs, which allow us to
greatly reduce the spatial dimensions on which convolutions are
learned and can reduce sample complexity.

4 LOCAL ENCODING OF SCATTERING

First, we motivate the use of the Shared Local Encoder for natural
image classifications. Then, we evaluate the supervised SLE on the
Imagenet ILSVRC2012 dataset. This is a large and challenging
natural color image dataset consisting of 1.2 million training
images and 50, 000 validation images, divided into 1000 classes.
We then show some unique properties of this network and evaluate
its features on a separate task.

4.1 Shared Local Encoder for Scattering Representa-
tions
We now discuss the spatial support of different approaches, in
order to motivate our local encoder for scattering. In CNNs
constructed for large scale image recognition, the representations
at a specific spatial location and depth depend upon large parts
of the initial input image and thus mixes global information. For
example, in [30], the effective spatial support of the corresponding
filter is already 32 pixels (out of 224) at depth 2. The specific
representations derived from CNNs trained on large scale image
recognition are often used as representations in other computer
vision tasks or datasets [57], [60].

On the other hand prior to 2012 local encoding methods led
to state of the art performance on large scale visual recognition
tasks [46]. In these approaches local neighborhoods of an image
were encoded using method such as SIFT descriptors [34], HOG
[15], and wavelet transforms [48]. They were also often combined
with an unsupervised encoding, such as sparse coding [8] or
Fisher Vectors (FVs) [46]. Indeed, many works in classical image
processing or classification [29], [8], [46], [44] suggest that local
encodings of an image are efficient descriptions. Additionally for
some algorithms that rely on local neighbourhoods, the use of local
descriptors is essential [34]. Observe that a representation based on
local non overlapping spatial neighborhood is simpler to analyze,
as there is no ad-hoc mixing of spatial information. Nevertheless,
in large scale classification, this approach was surpassed by fully
supervised learned methods [30].

We show that it is possible to apply a similarly local, yet super-
vised encoding algorithm to a scattering transform, as suggested
in the conclusion of [44]. First observe that at each spatial position
u, a scattering coefficient S(u) corresponds to a descriptor of a
local neighborhood of spatial size 2J . As explained in the first
Subsection 3.1, each of our scattering coefficients are obtained
using a stride of 2J , which means the final representation can be
interpreted as a non-overlapping concatenation of descriptors. Let
f be a cascade of fully connected layers that we identically apply
on each Sx(u). Then f is a cascade of CNN operators with spatial
support size 1 × 1, thus we write fSx , {f(Sx(u))}u. In the
sequel, we do not make any distinction between the 1 × 1 CNN
operators and the operator acting on Sx(u),∀u. We refer to f
as a Shared Local Encoder. We note that similarly to Sx, fSx
corresponds to non-overlapping encoded descriptors. To learn a

...

...

...

...
Sx(u− 2J )

Sx(u)

Sx(u+ 2J )

F4 F5 F6

F1 F2 F3

F1 F2 F3

F1 F2 F3

Fig. 4: Architecture of the SLE, which is a cascade of 3 1 × 1
convolutions followed by 3 fully connected layers. The ReLU non-
linearities are included inside the Fi blocks.

Method Top 1 Top 5
FV + FC [44] 55.6 78.4
FV + SVM [46] 54.3 74.3
AlexNet 56.9 80.1
Scat + SLE 57.0 79.6

TABLE 2: Top 1 and Top 5 percentage accuracy reported from one
single crop on ILSVRC2012. We compare to other local encoding
methods, and the Shared Local Encode (SLE) outperforms them
(see Sec. 4.2 for experiment details). [44] single-crop result was
provided by private communication.

supervised classifier on a large scale image recognition task, we
cascade fully connected layers on top of the SLE.

Combined with a scattering network, the supervised SLE,
has several advantages. Since the input corresponds to scattering
coefficients whose channels are structured, the first layer of f is
structured as well. We further explain and investigate this first
layer in Subsection 4.3. Unlike standard CNNs, there is no linear
combination of spatial neighborhoods of the different feature
maps, thus the analysis of this network need only focus on the
channel axis. Observe that if f was fed with raw images, for
example in gray scale, it could not build any non-trivial operation
except separating different level sets of these images.

In the next section, we investigate empirically this supervised
SLE trained on the ILSVRC2012 dataset.

4.2 Shared Local Encoder on Imagenet
We first describe our training pipeline, which is similar to [59]. We
trained our network for 90 epochs to minimize the standard cross
entropy loss, using SGD with momentum 0.9 and a batch size of
256. We used a weight decay of 1×10−4. The initial learning rate
is 0.1, and is decreased by a factor of 10 at epochs 30, 50, 70, and
80. During the training process, each image is randomly rescaled,
cropped, and flipped as in [24]. The final crop size is 224× 224.
At testing, we rescale the image to a size of 256×256, and extract
a center crop of size 224× 224.

We use an architecture which consists of a cascade of a
scattering network, a SLE f , followed by fully connected layers.
Figure 4 describes our architecture. We select the parameter J = 4
for our scattering network, which means the output representation
has size 224

24 ×
224
24 = 14 × 14 spatially and 1251 channels.

f is implemented as 3 layers of 1x1 convolutions F1, F2, F3

with layer size 1024. There are 2 fully connected layers of ouput
size 1524. For all learned layers we use batch normalization [27]
followed by a ReLU [30] non-linearity. We compute the mean and
variance of the scattering coefficients on the whole of ImageNet,
and standardized each spatial scattering coefficients with them.
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Table 2 reports our numerical accuracies obtained with a
single crop at testing, compared with local encoding methods,
and AlexNet, which was the state-of-the-art approach in 2012. We
obtain 20.4% at Top 5 and 43.0% Top 1 errors. The performance is
analogous to the AlexNet [30]. In term of architecture, our hybrid
model is analogous, and comparable to that of [46], [44], for
which SIFT features are extracted followed by FV [47] encoding.
Observe the FV is an unsupervised encoding compared to our
supervised encoding. Two approaches are then used: the spatial
localization is handled either by a Spatial Pyramid Pooling [31],
which is then fed to a linear SVM, or the spatial variables are
directly encoded in the FVs and classified with a stack of four
fully connected layers. This last method is a major difference
with ours, as the obtained descriptor does not have a spatial
indexing anymore which are instead quantized. Furthermore, in
both case, the SIFT are densely extracted which correspond to
approximatively 2 × 104 descriptors, whereas in our case, only
142 = 196 scattering coefficients are extracted. Indeed, we tackle
the non-linear aliasing (due to the fact that the scattering transform
is not oversampled) via random cropping during training, enabling
invariance to small translations. In Top 1, [46] and [44] obtain
error rates of 44.4% and 45.7%, respectively. Our method brings
a substantial improvement of 1.4% and 2.7%, respectively.

The BVLC AlexNet4 obtains a of 43.1% single-crop Top 1
error, which is nearly equivalent to the 43.0% of our SLE network.
The AlexNet has 8 learned layers and as explained before, large
receptive fields. On the contrary, our training pipeline consists in
6 learned layers with constant receptive field of size 16 × 16,
except for the fully connected layers that build a representation
mixing spatial information from different locations. This is a
surprising result, as it seems to suggest contextual information is
only necessary at the very last layers, to reach AlexNet accuracy.

We study briefly the local SLE, which only has a spatial extent
of 16×16, as a generic local image descriptor. We use the Caltech-
101 benchmark which is a dataset of 9144 images and 102 classes.
We followed the standard protocol for evaluation [8] with 10
folds and evaluate per class accuracy with 30 training samples
per class, using a linear SVM used with the SLE descriptors.
Applying our raw scattering network leads to an accuracy of
62.8± 0.7, and the output features from F1, F2, and F3 bring an
absolute improvement of 13.7, 17.3, and 20.1, respectively. The
accuracy of the final SLE descriptor is thus 82.9 ± 0.4, similar
to that reported for the AlexNet final layer in [60] and sparse
coding with SIFT [8]. However in both cases spatial variability is
removed, either by Spatial Pyramid Pooling [31], or the cascade
of large filters. By contrast, the concatenation of SLE descriptors
are completely local. Similarly, the scattering network combined
with ResNet-10 introduced in the next section, and followed by
a linear SVM achieves 87.7 on Caltech-101, yet this descriptor is
not local.

4.3 Interpreting SLE’s first layer
Finding structure in the kernel of the layers of depth less than
2 [56], [60] is a complex task, and few empirical analyses exist
that shed light on the structure [28] of deeper layers. A scattering
transform with scale J can be interpreted as a CNN with depth J
[42], whose channels indexes correspond to different scattering
frequency indexes, which is a structuration. This structure is

4. https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-
2012-val
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Fig. 5: Histogram of F̂1 amplitude for first and second order
coefficients. The vertical lines indicate a threshold that is used
in Subsection 4.3 to sparsify F̂1.

consequently inherited by the first layer F1 of our SLE f . We
analyse F1 and show that it explicitly builds invariance to local
rotations, and also that the Fourier bases associated to rotations
are a natural bases of our operator. It is a promising direction to
understand the nature of the next two layers.

We first establish some mathematical notions linked to the
rotation group that we use in our analysis. For the sake of clarity,
we do not consider the roto-translation group. For a given input
image x, let rθ.x(u) , x(r−θ(u)) be the image rotated by angle
θ, which corresponds to the linear action of rotation on images.
Observe the scattering representation is covariant with the rotation
in the following sense:

S1(rθ.x)(θ1, u) = S1x(θ1 − θ, r−θu) , rθ.(S
1x)(θ1, u),

S2(rθ.x)(θ1, θ2, u) = S2x(θ1 − θ, θ2 − θ, r−θu)

, rθ.(S
2x)(θ1, θ2, u).

Additionally, in the case of the second order coefficients, (θ1, θ2)
is covariant with rotations, but θ2 − θ1 is an invariant to rotation
that corresponds to a relative rotation.

The unitary representation framework [52] permits the build-
ing of a Fourier transform on a compact group, such as rotations.
It is even possible to build a scattering transform on the roto-
translation group [49]. Fourier analysis permits the measurement
of the smoothness of the operator and, in the case of a CNN
operator, it is a natural basis.

We can now numerically analyse the nature of the op-
erations performed along angle variables by the first layer
F1 of f , with output size K = 1024. Let us define as
{F 0

1 S
0x, F 1

1 S
1x, F 2

1 S
2x} the restrictions of F1 to the order 0,

1, and 2 scattering coefficients respectively. Let 1 ≤ k ≤ K
be an index of a feature channel and 1 ≤ c ≤ 3 be the color
index. In this case, F 0

1 S
0x is simply the weights associated to the

smoothing S0x. F 1
1 S

1x depends only on (k, c, j1, θ1), and F 2
1

depends on (k, c, j1, j2, θ1, θ2). We would like to characterize
the smoothness of these operators with respect to the variables
(θ1, θ2), because Sx is covariant to rotations.

To this end, we define by F̂ 1
1 , F̂ 2

1 the Fourier transform of
these operators along the variables θ1 and (θ1, θ2) respectively.
These operator are expressed in the tensorial frequency domain,
which corresponds to a change of basis. In this experiment, we
normalized each filter of F such that they have a `2 norm equal to
1, and each order of the scattering coefficients are normalized
as well. Figure 5 shows the distribution of the amplitude of
F̂ 1
1 , F̂

2
2 . We observe that the distribution is shaped as a Laplace

distribution, which is an indicator of sparsity.
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Fig. 6: Energy Ω1{F} (left) and Ω2{F} (right) from Eq. 1 for
given angular frequencies.

To illustrate that this is a natural basis we explicitly sparsify
this operator in its frequency basis and verify that empirically the
network accuracy is minimally changed. We do this by threshold-
ing by ε the coefficients of the operators in the Fourier domain.
Specifically we replace the operators F̂ 1

1 , F̂ 2
1 by 1|F̂ 1

1 |>ε
F̂ 1
1 and

1|F̂ 2
1 |>ε

F̂ 2
1 . We select an ε that sets 80% of the coefficients to 0,

which is illustrated in Figure 5. Without retraining our network
performance degrades by only an absolute value of 2% worse on
Top 1 and Top 5 ILSVRC2012. We have thus shown that this
basis permits a sparse approximation of the first layer, F1. We
now show evidence that this operator builds an explicit invariant
to local rotations.

To aid our analysis we introduce the following quantities:
Ω1{F}(ω1) ,

∑
k,j1,c

|F̂ 1
1 (k, c, j1, ωθ1)|2, (1)

Ω2{F}(ωθ1 , ωθ2) ,
∑

k,c,j1,j2

|F̂ 2
1 (k, c, j1, j2, ωθ1 , ωθ2)|2.

They correspond to the energy propagated by F1 for a given
frequency, and quantify the smoothness of our first layer operator
w.r.t. the angular variables. Figure 6 shows variation of Ω1{F}
and Ω2{F} as a function of the frequencies. For example, if F 1

1

and F 2
1 were convolutional along θ1 and (θ1, θ2), these quantities

would correspond to their respective singular values. One sees that
the energy is concentrated in the low frequency domain, which
indicates that F1 builds explicitly an invariant to local rotations.

5 CASCADING A SUPERVISED DEEP CNN ARCHI-
TECTURE

We demonstrate that cascading modern CNN architectures on
top of the scattering network can produce high performance
classification systems. We apply hybrid convolutional networks
on the Imagenet ILSVRC 2012 dataset as well as the CIFAR-10
dataset and show that they can achieve performance comparable
to modern end-to-end learned approaches. We then evaluate the
hybrid networks in the setting of limited data by utilizing a subset
of CIFAR-10 as well as the STL-10 dataset and show that we can
obtain substantial improvement in performance over analogous
end-to-end learned CNNs.

5.1 Deep Hybrid CNNs on ILSVRC2012

We showed in the previous section that a SLE followed by FC
layers can produce results comparable to AlexNet [30] on the
ImageNet classification task. Here we consider cascading the
scattering transform with a modern CNN architecture, such as
ResNet [59], [24]. We take ResNet-18 [59] as a reference and

Method Top 1 Top 5 Params
AlexNet 56.9 80.1 61M
VGG-16 [23] 68.5 88.7 138M
Scat + Resnet-10 (ours) 68.7 88.6 12.8M
Resnet-18 68.9 88.8 11.7M
Resnet-200 [59] 78.3 94.2 64.7M

TABLE 3: ILSVRC-2012 validation accuracy (single crop) of
hybrid scattering and 10 layer ResNet, a comparable 18 layer
ResNet, and other well known benchmarks. We obtain comparable
performance using a similar number of parameters while learning
parameters at a spatial resolution of 28 × 28

Method Accuracy
Unsupervised Representations
CKN [35] 82.2
Roto-Scat + SVM [42] 82.3
ExemplarCNN [19] 84.3
DCGAN [45] 82.8
Scat + FC (ours) 84.7
Supervised and Hybrid
Scat + WRN (ours) 93.1
Highway network [51] 92.4
All-CNN [50] 92.8
WRN 16 - 8 [59] 95.7
WRN 28 - 10 [59] 96.0

TABLE 4: Accuracy of scattering compared to similar architec-
tures on CIFAR10. We set a new state-of-the-art in the unsuper-
vised case and obtain competitive performance with hybrid CNNs
in the supervised case.

construct a similar architecture with only 10 layers on top of the
scattering network. We utilize a scattering transform with J = 3
such that the CNN is learned over a spatial dimension of 28× 28
and a channel dimension of 651 (3 color channels of 217 each).
ResNet-18 typically has 4 residual stages of 2 blocks each which
gradually decrease the spatial resolution [59]. Since we utilize the
scattering as a first stage we remove two blocks from our model.
The network is described in Table 5.

We use the same optimization and data augmentation proce-
dure described in Section 4.2 but with decreases in the learning
rate at 30, 60, and 80 epochs. We find that when both methods
are trained with the same settings of optimization and data aug-
mentation, and when the number of parameters is similar (12.8M
versus 11.7 M) the scattering network combined with a ResNet
can achieve analogous performance (11.4% Top 5 for our model
versus 11.1%), while utilizing fewer layers compared to a pure
ResNet architecture. The accuracy is reported in Table 3 and
compared to other modern CNNs.

Stage Output size Stage details
scattering 28×28 J = 3, 651 channels

conv1 28×28 [256]

conv2 28×28
[

256
256

]
×2

conv3 14×14
[

512
512

]
×2

avg-pool 1× 1 [14× 14]

TABLE 5: Structure of Scattering and ResNet-10 architectures
used in ImageNet experiments. Taking the convention of [59] we
describe the convolution size and channels in the stage details.
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Stage Output size Stage details
scattering 8× 8, 24× 24 J = 2

conv1 8×8, 24×24 16×k , 32×k

conv2 8×8, 24×24
[

32×k
32×k

]
×n

conv3 8×8, 12×12
[

64×k
64×k

]
×n

avg-pool 1× 1 [8× 8], [12× 12]

TABLE 6: Structure of Scattering and Wide ResNet hybrid ar-
chitectures used in small sample experiments. Network width is
determined by factor k. For sizes and stage details if settings vary,
we list CIFAR-10 and then the STL-10 network information. All
convolutions are of size 3 × 3 and the channel width is shown in
brackets for both the network applied to STL-10 and CIFAR-10.
For CIFAR-10 we use n = 2 and for the larger STL-10 we use
n = 4.

This demonstrates both that the scattering networks does not
lose discriminative power and that it can be used to replace early
layers of standard CNNs. We also note that learned convolu-
tions occur over a drastically reduced spatial resolution without
resorting to pre-trained early layers, which can potentially lose
discriminative information or become too task specific.

5.2 Deep Hybrid CNNs on CIFAR-10

We now consider the popular CIFAR-10 dataset consisting of color
images composed of 5 × 104 images for training, and 1 × 104

images for testing divided into 10 classes. We use a hybrid CNN
architecture with a ResNet built on top of the scattering transform.

For the scattering transform we used J = 2 which means the
output of the scattering stage will be 8×8 spatially and 243 in the
channel dimension. We follow the training procedure prescribed
in [59] utilizing SGD with momentum of 0.9, batch size of 128,
weigh decay of 5×10−4, and modest data augmentation by using
random cropping and flipping. The initial learning rate is 0.1, and
we reduce it by a factor of 5 at epochs 60, 120 and 160. The models
are trained for 200 epochs in total. We used the same optimization
and data augmentation pipeline for training and evaluation in both
case. We utilize batch normalization techniques at all layers which
lead to a better conditioning of the optimization [27]. Table 4
reports the accuracy in the unsupervised and supervised settings
and compares them to other approaches.

We compare to state-of-the-art approaches on CIFAR-10, all
based on end-to-end learned CNNs. We use a similar hybrid
architecture to the successful wide residual network (WRN) [59].
Specifically we modify the WRN of 16 layers, which consists
of 4 convolutional stages. With k denoting the widening factor,
after the scattering output we use a first stage of 32 × k. We add
intermediate 1 × 1 convolutions to increase the effective depth,
without substantially increasing the number of parameters. Finally
we apply a dropout of 0.2 as specified in [59]. Using a width of
32 we achieve an accuracy of 93.1%. This is superior to several
benchmarks but performs worse than the original ResNet [24]
and the wide ResNet [59]. We note that training procedures for
learning directly from images, including data augmentation and
optimization settings, have been heavily optimized for networks
trained directly on natural images, while we use them largely out
of the box.

Method 100 500 1000 Full
WRN 16-8 34.7 ± 0.8 46.5 ±1.4 60.0 ±1.8 95.7
VGG 16 [58] 25.5 ±2.7 46.2± 2.6 56± 1.0 92.6
Scat + WRN 38.9 ± 1.2 54.7±0.6 62.0±1.1 93.1

TABLE 7: Mean accuracy of a hybrid scattering in a limited
sample situation on CIFAR-10 dataset. We find that including a
scattering network is significantly better in the smaller sample
regime of 500 and 100 samples.

5.3 Limited samples setting

A major application of a hybrid representation is in the setting
of limited data. Here the learning algorithm is limited in the
variations it can observe or learn from the data, such that intro-
ducing a geometric prior can substantially improve performance.
We evaluate our algorithm on the limited sample setting using a
subset of CIFAR-10 and the STL-10 dataset.

5.3.1 CIFAR-10
We take subsets of decreasing size of the CIFAR dataset and train
both baseline CNNs and counterparts that utilize the scattering
as a first stage. We perform experiments using subsets of 1000,
500, and 100 samples, which are split uniformly amongst the 10
classes.

We use as a baseline the Wide ResNet [59] of depth 16 and
width 8, which shows near state-of-the-art performance on the full
CIFAR-10 task in the supervised setting. This network consists of
4 stages of progressively decreasing spatial resolution detailed in
[59, Table 1]. We construct a comparable hybrid architecture that
removes a single stage and all strides, as the scattering already
down-sampled the spatial resolution. This architecture is described
in Table 6. Unlike the baseline, referred from here-on as WRN
16-8, our architecture has 12 layers and equivalent width, while
keeping the spatial resolution constant through all stages prior
to the final average pooling. We also incorporate the numerical
results obtained via a VGG of depth 16 [58] for the sake of
comparison.

We use the same training settings for our baseline, WRN 16-8,
and our hybrid scattering and WRN-12. The settings are the same
as those described for CIFAR-10 in the previous section, with the
only difference being that we apply a multiplier to the learning rate
schedule and to the maximum number of epochs. The multiplier
is set to 10, 20, and 100 for the 1000, 500, and 100 sample cases,
respectively. For example the default schedule of 60, 120, and 160
epochs becomes 600, 1200, and 1600 for the case of 1000 samples
and a multiplier of 10. Finally in the case of 100 samples we use
a batch size of 32 in lieu of 128.

Table 7 corresponds to the averaged accuracy over 5 different
subsets, with the corresponding standard error. In this small
sample setting, a hybrid network outperforms the purely CNN
based baselines, particularly when the sample size is smaller.
This is not surprising as we incorporate a geometric prior in the
representation.

5.3.2 STL-10
The STL-10 dataset consists of color images of size 96 × 96,
with only 5000 labeled images in the training set divided equally
in 10 classes and 8000 images in the test set. The larger size of
the images and the small number of available samples make this
a challenging image classification task. The dataset also provides
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Method Accuracy
Supervised methods
Scat + WRN 20-8 76.0 ± 0.6
CNN[53] 70.1 ± 0.6
Unsupervised methods
Exemplar CNN [19] 75.4 ± 0.3
Stacked what-where AE [61] 74.33
Hierarchical Matching Pursuit (HMP) [7] 64.5±1
Convolutional K-means Network [13] 60.1±1

TABLE 8: Mean accuracy of a hybrid CNN on the STL-10 dataset.
We find that our model is better in all cases even compared to those
utilizing the large unsupervised part of the dataset.

100,000 unlabeled images for unsupervised learning. We do not
utilize these images in our experiments, yet we find we are able to
outperform all methods which learn unsupervised representations
using these unlabeled images, obtaining very competitive results
on the STL-10 dataset.

We apply a hybrid convolutional architecture, similar to the
one applied in the small sample CIFAR task, adapted to the size
of 96× 96. The architecture is described in Table 6 and is similar
to that used in the CIFAR small sample task. We use the same
data augmentation as with the CIFAR datasets. We apply SGD
with learning rate 0.1 and learning rate decay of 0.2 applied at
epochs 1500, 2000, 3000, 4000. Training is run for 5000 epochs.
We use at training and evaluation the predefined 10 folds of 1000
training images each, as given in [61]. The averaged result is
reported in Table 8. Unlike other approaches, we do not use
the 4000 remaining training images to perform hyper-parameter
tuning on each fold, as this is not representative of small sample
situations. Instead we train the same settings on each fold. The
best reported result in the purely supervised case is a CNN [53],
[19] whose hyper parameters have been automatically tuned using
4000 images for validation achieving 70.1% accuracy. The other
competitive methods on this dataset utilize the unlabeled data
to learn in an unsupervised manner before applying supervised
methods. We also evaluate on the full training set of 5000 images
obtaining an accuracy of 87.6%, which is quite higher than 81.3%
[25] using unsupervised learning and the full training set. These
techniques add several hyper parameters and require an additional
engineering process. Applying a hybrid network is on the other
hand straightforward and is very competitive with all the existing
approaches without using any unsupervised learning. In addition
to showing that hybrid networks perform well in the small sample
regime, these results, along with our unsupervised CIFAR-10
result, suggest that completely unsupervised feature learning on
image data may still not outperform supervised methods and pre-
defined representations for downstream discriminative tasks. One
possible explanation is that in the case of natural images, unsuper-
vised learning of more complex variabilities than geometric ones
(e.g the rototranslation group) might be ill-posed.

6 UNSUPERVISED AND HYBRID UNSUPERVISED
LEARNING WITH THE SCATTERING TRANSFORM

This section describes the use of the Scattering Transform as an
unsupervised representation and as part of hybrid unsupervised
learning. First we evaluate the scattering as an unsupervised
representation using the CIFAR-10 and ImageNet datasets, then
we show that it can be used inside common unsupervised learning
schemes by proposing a hybrid GAN combined with a Scattering

Transform, which synthesizes Scattering Coefficients from ran-
dom Gaussian noise on 32 × 32 color images from ImageNet.
Using the reconstruction proposed in Section 3.4 we show that we
can generate images from this GAN model.

6.1 Scattering as an Unsupervised Representation

We first consider the CIFAR-10 dataset used in Section 5.2 and
perform an experiment that allows us to evaluate the scattering
transform as an unsupervised representation with a complex non-
convolutional classifier. In a second experiment, we consider the
linear classification task on ILSVRC 2012 often used to evaluate
unsupervised representations [3].

For CIFAR-10, as in Section 5.2, we used J = 2 which
means the output of the scattering stage will be 8 × 8 spatially
and 243 in the channel dimension. This task has been commonly
evaluated on CIFAR-10 with a non-linear classifier [42] and we
thus consider the use of a MLP. We follow the training procedure
prescribed in [59] utilizing SGD with momentum of 0.9, batch size
of 128, weigh decay of 5× 10−4, and modest data augmentation
of the dataset by using random cropping and flipping. The initial
learning rate is 0.1, and we reduce it by a factor of 5 at epochs
60, 120 and 160. The models are trained for 200 epochs in total.
We used the same optimization and data augmentation pipeline
for training and evaluation in both cases. We utilize batch nor-
malization at all layers which leads to a better conditioning of the
optimization [27]. Table 4 reports the accuracy in the unsupervised
and supervised settings and compares them to other approaches.
Combining the scattering transform with a NN classifier consisting
of 3 hidden layers, with width 1.1 × 104, we show that one
can obtain a new state of the art classification for the case of
unsupervised convolutional layers. More numerical comparisons
with other unsupervised methods, such as random networks, can
be found in [42]. Scattering based approaches outperform all
methods utilizing learned and not-learned unsupervised features,
further demonstrating the discriminative power of the scattering
network representation.

For the ILSVRC-2012 dataset we use a common evaluation
based on training a linear classifier on top of the unsupervised
representation [3]. We used a standard training protocol with
cross-entropy loss on top of a scattering transform produced with
J = 4. We apply standard data augmentation, optimizing with
stochastic gradient descent with momentum 0.9, weight decay set
to 1e − 7, and learning rate drops at epochs 20, 40, and 60. The
results are shown in Table 9 and are compared with unsupervised
and self-supervised baselines. Observe that a Scattering Transform
improves significantly from a random baseline [3], and that it
recognize a large number of images even when only considering
the top result. The accuracy of a random baseline is still high,
because the small support of the convolutional operators already
incorporates some geometric structures in this type of pipeline.
Modern learned unsupervised representations however can im-
prove on this result.

In order to test the robustness of the Scattering Network w.r.t.
adversarial examples, we used the simple sign gradient attack [20].
We build adversarial examples that fool our linear layer, which
means for a given x classified as c that we desire to force the
classifer to erroneously classify as c̃ 6= c, we find the smallest εx
such that:

class(x+ εx) = c̃.
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Method Top 1
Scattering + 1 FC 17.4 %
Random CNN [3] 12.9 %
Pathak et al [43] 22.3%
Doersch et al [16] 31.7%
Donahue et al [18] 31.0%
Noroozi and Favaro et al [39] 34.7%
Arandjelovic et al [3] 32.6 %

TABLE 9: Comparison of the top-1 accuracy from unsupervised
and self-supervised representation, on the ImageNet dataset,
evaluated as ours with a linear classifier. We compare to a reported
result of a similar architecture and random initialization. We also
show result of learned unsupervised representations for reference.
Baselines for the linear classification results are taken from [3].

(a) Original image x,
well classified with
output probability:
0.35, tiger cat

(b) Adversarial sample
x̃, wrongly classified
with output probability
with ε = 0.15:
0.02, magnetic
compass

(c) x−x̃ (magnified for
a better visualization)

Fig. 7: Adversarial examples obtained from a Scattering Trans-
form followed by a linear classifier on ImageNet.

In our case, candidates for ε are given by vectors collinear to
the gradient sign in the direction of c̃ as explained in [21]. Results
are shown in Figure 7.

It shows that being only 1-Lipschitz is not sufficient to be
visually robust to such artifacts, when combined only with a linear
classifier; using non-linear classifier, such as a CNN, designed to
be robust to predefined noises could permit to tackle this issue.

6.2 Hybrid Unsupervised Learning with Scattering
GAN

In this section we propose to construct a Generative Adversarial
Network (GAN) in the space of scattering coefficients. This
essentially constructs a hybrid generator and discriminator. The
GAN is a state-of-the-art generative modeling framework. The
use of the learned generator on top of a scattering transform can
be well motivated if we consider the scattering transform as good
a model of low level texture [11]. Furthermore, as extensive data
augmentation is often not required, it is possible to store scattering
representations that have a smaller spatial resolution, permitting
us to try rapidly a variety of architectures. We demonstrate in
the following that a scattering representation can be used as the
initialization of a generative model, similar to the classification
case.

We follow the Deep Convolutional Generative Adversarial
Network architectures proposed in [45] in order to generate signals
in the scattering space. We consider color images from the resized
ImageNet dataset of size 32 × 32 in the Y UV space that are
processed by a Scattering Transform with J = 2. The scattering
coefficients were renormalized to lie between −1 and 1. Their

Generator
random uniform Input size 100
2x2 Trans. Conv. stride 1, batch norm, LeakyReLU, 256 out
4x4 Trans. Conv. stride 2, pad 1,batchnorm, LeakyReLU,128 out
4x4 Trans. Conv. stride 2, pad 1,batchnorm, tanh, 243x8x8 out
Discriminator

random uniform Input size 243x8x8
4x4 Conv. stride 1, batchnorm, LeakyReLU, 128 out
4x4 Conv. stride 2, pad 1,batchnorm, LeakyReLU,256 out
4x4 Conv. stride 2, pad 1, LeakyReLU, 256 out
1x1 Conv. stride 1,batchnorm, 256 out

Fully connected layer

TABLE 10: Architecture of the Discriminator and Generator of
the Scattering-DCGAN.

Fig. 8: Samples generated by the Scattering-DCGAN. See Section
6.2 for details.

scattering representations are then fed to the generator and dis-
criminators of our Scattering-DCGAN. In particular, the generator
aims to synthesize scattering coefficients from a Gaussian noise
with d = 100. They are represented in Table 10. Moreover we
apply the recently proposed Wasserstein distance based objective
[22], [4].

We now describe our training procedure. We run the Adam
optimizer for both the discriminator and generator during 600k
iterations without observing significant instabilities during the
optimization. The discriminator is trained during 5 successive
iterations and the generator only 1, as done in [22], because we
observed it leads to more realistic images. The generator takes as
input a latent variable of 100 dimensions.

Section 3.4 shows that the scattering transform can be used
to reconstruct images. We thus recover images generated from
our model from the generated scattering coefficients, and they
are shown in Figure 8. These images are qualitatively similar
to other baselines, and it shows how one can use the scatter-
ing transform with more complex models. Generating coherent
Scattering coefficients that leads to real images is challenging:
the non-surjectivity of the scattering transform is due to physical
constraints(e.g. interactions between different coefficients), yet we
however did not incorporate this knowledge in our architectures.
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Scattering approximator
3x3 Convolution stride 1, batch norm, ReLU, 128 output
3x3 Convolution stride 2, batch norm, ReLU, 128 output
3x3 Convolution stride 1, batch norm, ReLU, 128 output
3x3 Convolution stride 1, batch norm, ReLU, 256 output
3x3 Convolution stride 2, batch norm, ReLU, 243 output
Cascaded CNN

3x3 Convolution ×10 stride 1, batch norm, ReLU, 128 output
3x3 Convolution ×10 stride 1, batch norm, ReLU, 256 output

Averaging layer
Fully connected layer

TABLE 11: Architecture of the Scattering approximator.

7 LEARNING SCATTERING

Many theoretical arguments of deep learning rely on the universal
approximation theorem [14]. The flexibility of this deep learning
frameworks raises the following question: can we approximate the
first scattering layers by a deep network?

In order to explore this question, we consider a 5-layer convnet
as a candidate to replace our scattering network on CIFAR10.
Its architecture is described in Table 11, and it has the same
output size as a scattering network. It has two downsampling
steps, in order to mimic the behavior of a scattering network
with J = 2. We build a hybrid architecture, i.e. scattering
followed by a Cascaded CNN, described in Table 11 that leads
to 91.4% on CIFAR10. Then we replace the scattering part by
the CNN of Table 11, i.e. the Scattering Approximator. We train
it, keeping the weights of the Cascaded CNN layers constant and
equal to the optimal solution found with the scattering. Instead of
minimizing a loss between the output of a scattering network and
this network, we target the best input for the fixed convnet given
the classification task.

This architecture can achieve 1% accuracy below the original
pipeline, which indicates it is possible to learn the Scattering
representation. Using a shallower network seems to degrade the
performances, but we did not investigate this question further.
In any case, the learned network will not have any guarantee of
stability properties present in the original scattering transform.

8 CONCLUSION

This work demonstrates a competitive approach for large scale
visual tasks, based on scattering networks, in particular for
ILSVRC2012. When compared with unsupervised representations
on CIFAR-10 or small data regimes on CIFAR-10 and STL-10,
we demonstrate state-of-the-art results. We build a supervised
Shared Local Encoder (SLE) that permits the scattering networks
to surpass other local encoding methods on ILSVRC2012. This
network of just 3 learned layers permits a deteailed analysis of the
performed operations. We additionally prove that it is possible to
synthetize images from a GAN in the Scattering space.

Our work also suggests that pre-defined features are still of
interest and can provide valuable insights into deep learning tech-
niques and to allow them to be more interpretable. Combined with
appropriate learning methods, they enable stronger theoretical
guarantees, which are necessary to engineer better deep models
and stable representations.
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