The non-linear sewing lemma II: Lipschitz continuous formulation

Abstract : We give an unified framework to solve rough differential equations. Based on flows, our approach unifies the former ones developed by Davie, Friz-Victoir and Bailleul. The main idea is to build a flow from the iterated product of an almost flow which can be viewed as a good approximation of the solution at small time. In this second article, we give some tractable conditions under which the limit flow is Lipschitz continuous and its links with uniqueness of solutions of rough differential equations. We also give perturbation formulas on almost flows which link the former constructions.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.inria.fr/hal-01839202
Contributeur : Antoine Lejay <>
Soumis le : vendredi 13 juillet 2018 - 20:10:17
Dernière modification le : vendredi 14 septembre 2018 - 09:16:06
Document(s) archivé(s) le : lundi 15 octobre 2018 - 10:29:29

Fichier

non-linear-sewing-lemma-II.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01839202, version 1

Citation

A Brault, Antoine Lejay. The non-linear sewing lemma II: Lipschitz continuous formulation. 2018. 〈hal-01839202v1〉

Partager

Métriques

Consultations de la notice

154

Téléchargements de fichiers

38