R. Bauer and A. Gharabaghi, Estimating cognitive load during self-regulation of brain activity and neurofeedback with therapeutic brain-computer interfaces, Frontiers in Behavioral Neuroscience, vol.114, p.21, 2015.
DOI : 10.3171/2011.1.jns101421

URL : http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00021/pdf

L. Bianchi, L. R. Quitadamo, G. Garreffa, G. C. Cardarilli, and M. G. Marciani, Performances Evaluation and Optimization of Brain Computer Interface Systems in a Copy Spelling Task, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, issue.2, pp.207-216, 2007.
DOI : 10.1109/TNSRE.2007.897024

R. Chavarriaga, M. Fried-oken, S. Kleih, F. Lotte, and R. Scherer, Heading for new shores! Overcoming pitfalls in BCI design, Brain-Computer Interfaces, vol.14, issue.3, pp.1-14, 2016.
DOI : 10.1080/17483100600845414

URL : https://hal.archives-ouvertes.fr/hal-01415906

K. Colwell, C. Throckmorton, L. Collins, and K. Morton, Projected Accuracy Metric for the P300 Speller, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, issue.5, pp.921-925, 2014.
DOI : 10.1109/TNSRE.2014.2324892

M. Congedo, A. Barachant, and R. Bhatia, Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Computer Interfaces, vol.5, issue.2, pp.1-20, 2017.
DOI : 10.1002/0471722235

URL : https://hal.archives-ouvertes.fr/hal-01570120

J. L. Contreras and . Vidal, Identifying engineering, clinical and patient's metrics for evaluating and quantifying performance of brain-machine interface (BMI) systems, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.1489-1492, 2014.
DOI : 10.1109/SMC.2014.6974126

B. Dal-seno, M. Matteucci, and L. T. Mainardi, The Utility Metric: A Novel Method to Assess the Overall Performance of Discrete Brain???Computer Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, issue.1, pp.20-28, 2010.
DOI : 10.1109/TNSRE.2009.2032642

J. Faller, R. Scherer, U. Costa, E. Opisso, J. Medina et al., A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment, PLoS ONE, vol.43, issue.7, p.101168, 2014.
DOI : 10.1371/journal.pone.0101168.t002

URL : https://doi.org/10.1371/journal.pone.0101168

E. Felton, R. Radwin, J. Wilson, and J. Williams, Evaluation of a modified Fitts law brain???computer interface target acquisition task in able and motor disabled individuals, Journal of Neural Engineering, vol.6, issue.5, p.56002, 2009.
DOI : 10.1088/1741-2560/6/5/056002

J. Frey, R. Gervais, S. Fleck, F. Lotte, and M. Hachet, Teegi, Proceedings of the 27th annual ACM symposium on User interface software and technology, UIST '14, pp.301-308, 2014.
DOI : 10.1145/2642918.2647368

URL : https://hal.archives-ouvertes.fr/hal-01025621

J. Frey, R. Gervais, T. Lainé, M. Duluc, H. Germain et al., Scientific Outreach with Teegi, a Tangible EEG Interface to Talk about Neurotechnologies, Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems , CHI EA '17, 2017.
DOI : 10.1109/5.939829

URL : https://hal.archives-ouvertes.fr/hal-01484574

J. H. Friedman, On bias, variance, 0/1-loss, and the curse-of-dimensionality, Data Mining and Knowledge Discovery, vol.1, issue.1, pp.55-77, 1997.
DOI : 10.1023/A:1009778005914

E. V. Friedrich, C. Neuper, and R. Scherer, Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually, PLoS ONE, vol.127, issue.9, p.76214, 2013.
DOI : 10.1371/journal.pone.0076214.t002

URL : https://doi.org/10.1371/journal.pone.0076214

K. Fukunaga, Statistical Pattern Recognition, second edition, 1990.

J. H. Gruzelier, EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants, Neuroscience & Biobehavioral Reviews, vol.44, pp.124-141, 2014.
DOI : 10.1016/j.neubiorev.2013.09.015

N. J. Hill, A. Häuser, and G. Schalk, A general method for assessing brain???computer interface performance and its limitations, Journal of Neural Engineering, vol.11, issue.2, p.26018, 2014.
DOI : 10.1088/1741-2560/11/2/026018

URL : http://europepmc.org/articles/pmc4113089?pdf=render

C. Jeunet, E. Jahanpour, and F. Lotte, Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study, Journal of Neural Engineering, vol.13, issue.3, p.36024, 2016.
DOI : 10.1088/1741-2560/13/3/036024

URL : https://hal.archives-ouvertes.fr/hal-01302154

C. Jeunet, F. Lotte, and B. N. Kaoua, Human Learning for Brain?Computer Interfaces, pp.233-250, 2016.

C. Jeunet, B. N. Kaoua, and F. Lotte, Advances in user-training for mentalimagery-based BCI control: Psychological and cognitive factors and their neural correlates, Progress in brain research, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302138

C. Jeunet, B. N-'kaoua, S. Subramanian, M. Hachet, and F. Lotte, Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns, PLOS ONE, vol.25, issue.1, p.20, 2015.
DOI : 10.1371/journal.pone.0143962.g008

URL : https://hal.archives-ouvertes.fr/hal-01177685

T. Kaufmann, J. Williamson, E. Hammer, R. Murray-smith, and A. Kübler, Visually multimodal vs. classic unimodal feedback approach for smr-bcis: a comparison study, Int. J. Bioelectromagn, vol.13, pp.80-81, 2011.

A. Kübler, E. M. Holz, A. Riccio, C. Zickler, T. Kaufmann et al., The User-Centered Design as Novel Perspective for Evaluating the Usability of BCI-Controlled Applications, PLoS ONE, vol.8, issue.12, p.112392, 2014.
DOI : 10.1371/journal.pone.0112392.t006

A. Kübler, D. Mattia, H. George, B. Doron, and C. Neuper, How much learning is involved in BCI-control? In Int, BCI Meeting, 2010.

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain???computer interfaces, Journal of Neural Engineering, vol.4, issue.2, pp.1-13, 2007.
DOI : 10.1088/1741-2560/4/2/R01

URL : https://hal.archives-ouvertes.fr/hal-01846433

F. Lotte and C. Jeunet, Towards improved BCI based on human learning principles, The 3rd International Winter Conference on Brain-Computer Interface, 2015.
DOI : 10.1109/IWW-BCI.2015.7073024

URL : https://hal.archives-ouvertes.fr/hal-01111843

F. Lotte and C. Jeunet, Online classification accuracy is a poor metric to study mental imagery-based BCI user learning: an experimental demonstration and new metrics, International Brain-Computer Interface Conference, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519478

F. Lotte, F. Larrue, and C. Mühl, Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design, Frontiers in Human Neuroscience, vol.7, issue.568, p.2013
DOI : 10.3389/fnhum.2013.00568

URL : https://hal.archives-ouvertes.fr/hal-00862716

D. Mcfarland, W. Sarnacki, and J. Wolpaw, Should the parameters of a BCI translation algorithm be continually adapted?, Journal of Neuroscience Methods, vol.199, issue.1, pp.103-107, 2011.
DOI : 10.1016/j.jneumeth.2011.04.037

J. Mercier-ganady, F. Lotte, E. Loup-escande, M. Marchal, and A. Lécuyer, The Mind-Mirror: See your brain in action in your head using EEG and augmented reality, 2014 IEEE Virtual Reality (VR), pp.33-38, 2014.
DOI : 10.1109/VR.2014.6802047

URL : https://hal.archives-ouvertes.fr/hal-01052681

J. Mladenovi´cmladenovi´c, J. Frey, M. Bonnet-save, J. Mattout, and F. Lotte, The impact of flow in an EEG-based brain computer interface, 7th International BCI conference, 2017.

G. Müller-putz, V. Kaiser, T. Solis-escalante, and G. Pfurtscheller, Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG, Medical & Biological Engineering & Computing, vol.111, issue.4, pp.229-233, 2010.
DOI : 10.1007/s11517-009-0572-7

C. Neuper and G. Pfurtscheller, Brain-Computer Interfaces, chapter Neurofeedback Training for BCI Control The Frontiers Collection, pp.65-78, 2010.

G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication . proceedings of the IEEE, pp.1123-1134, 2001.

L. Pillette, C. Jeunet, B. Mansencal, R. N-'kambou, B. N. Kaoua et al., PEANUT: Personalised Emotional Agent for Neurotechnology User-Training, 7th International BCI Conference, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519480

S. E. Poltrock and P. Brown, Individual Differences in visual imagery and spatial ability, Intelligence, vol.8, issue.2, pp.93-138, 1984.
DOI : 10.1016/0160-2896(84)90019-9

H. Ramoser, J. Muller-gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Transactions on Rehabilitation Engineering, vol.8, issue.4, pp.441-446, 2000.
DOI : 10.1109/86.895946

L. Roijendijk, S. Gielen, and J. Farquhar, Classifying Regularized Sensor Covariance Matrices: An Alternative to CSP, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.24, issue.8, pp.893-900, 2016.
DOI : 10.1109/TNSRE.2015.2477687

A. Schlögl, J. Kronegg, J. Huggins, and S. G. Mason, Towards Brain-Computer Interfacing, chapter Evaluation criteria in BCI research, pp.327-342, 2007.

J. Schumacher, C. Jeunet, and F. Lotte, Towards Explanatory Feedback for User Training in Brain-Computer Interfaces, 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp.3169-3174, 2015.
DOI : 10.1109/SMC.2015.550

URL : https://hal.archives-ouvertes.fr/hal-01179329

M. Spüler, A high-speed brain-computer interface (BCI) using dry EEG electrodes, PLOS ONE, vol.23, issue.2, p.172400, 2017.
DOI : 10.1371/journal.pone.0172400.t004

E. Thomas, M. Dyson, and M. Clerc, An analysis of performance evaluation for motor-imagery based BCI, Journal of Neural Engineering, vol.10, issue.3, p.31001, 2013.
DOI : 10.1088/1741-2560/10/3/031001

URL : https://hal.archives-ouvertes.fr/hal-00821971

D. E. Thompson, L. R. Quitadamo, L. Mainardi, S. Gao, P. Kindermans et al., Performance measurement for brain???computer or brain???machine interfaces: a tutorial, Journal of Neural Engineering, vol.11, issue.3, p.35001, 2014.
DOI : 10.1088/1741-2560/11/3/035001

D. E. Thompson, S. Warschausky, and J. E. Huggins, Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy, Journal of Neural Engineering, vol.10, issue.1, p.16006, 2012.
DOI : 10.1088/1741-2560/10/1/016006

R. Tomioka and K. Müller, A regularized discriminative framework for EEG analysis with application to brain???computer interface, NeuroImage, vol.49, issue.1, pp.415-432, 2010.
DOI : 10.1016/j.neuroimage.2009.07.045

S. G. Vandenberg and A. R. Kuse, Mental rotations, a group test of threedimensional spatial visualization. Perceptual and motor skills, pp.599-604, 1978.

C. Vidaurre, C. Sannelli, K. Müller, and B. Blankertz, Co-adaptive calibration to improve BCI efficiency, Journal of Neural Engineering, vol.8, issue.2, p.25009, 2011.
DOI : 10.1088/1741-2560/8/2/025009

C. Vidaurre, C. Sannelli, K. Müller, and B. Blankertz, Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces, Neural Computation, vol.8, issue.3, pp.791-816, 2011.
DOI : 10.1016/S1388-2457(02)00057-3

J. R. Wolpaw, H. Ramoser, D. J. Mcfarland, and G. Pfurtscheller, EEG-based communication: improved accuracy by response verification, IEEE Transactions on Rehabilitation Engineering, vol.6, issue.3, pp.326-333, 1998.
DOI : 10.1109/86.712231

F. Yger, M. Berar, and F. Lotte, Riemannian Approaches in Brain-Computer Interfaces: A Review, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.25, issue.10, 2017.
DOI : 10.1109/TNSRE.2016.2627016

URL : https://hal.archives-ouvertes.fr/hal-01394253

F. Yger, F. Lotte, and M. Sugiyama, Averaging covariance matrices for EEG signal classification based on the CSP: An empirical study, 2015 23rd European Signal Processing Conference (EUSIPCO), pp.2721-2725, 2015.
DOI : 10.1109/EUSIPCO.2015.7362879

URL : https://hal.archives-ouvertes.fr/hal-01182728

C. Zich, S. Debener, C. Kranczioch, M. G. Bleichner, I. Gutberlet et al., Real-time EEG feedback during simultaneous EEG???fMRI identifies the cortical signature of motor imagery, NeuroImage, vol.114, pp.438-447, 2015.
DOI : 10.1016/j.neuroimage.2015.04.020